mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-10-11 02:11:30 +02:00
328 lines
11 KiB
Fortran
328 lines
11 KiB
Fortran
double precision function ao_tc_sym_two_e_pot(i,j,k,l)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! integral of the AO basis <ik|jl> or (ij|kl)
|
|
! i(r1) j(r1) (tc_pot(r12,mu)) k(r2) l(r2)
|
|
!
|
|
! where (tc_pot(r12,mu)) is the scalar part of the potential EXCLUDING the term erf(mu r12)/r12.
|
|
!
|
|
! See Eq. (32) of JCP 154, 084119 (2021).
|
|
END_DOC
|
|
integer,intent(in) :: i,j,k,l
|
|
integer :: p,q,r,s
|
|
double precision :: I_center(3),J_center(3),K_center(3),L_center(3)
|
|
integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3)
|
|
double precision :: integral
|
|
include 'utils/constants.include.F'
|
|
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp
|
|
double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq
|
|
integer :: iorder_p(3), iorder_q(3)
|
|
double precision, allocatable :: schwartz_kl(:,:)
|
|
double precision :: schwartz_ij
|
|
double precision :: scw_gauss_int,general_primitive_integral_gauss
|
|
|
|
dim1 = n_pt_max_integrals
|
|
|
|
num_i = ao_nucl(i)
|
|
num_j = ao_nucl(j)
|
|
num_k = ao_nucl(k)
|
|
num_l = ao_nucl(l)
|
|
ao_tc_sym_two_e_pot = 0.d0
|
|
double precision :: thr
|
|
thr = ao_integrals_threshold*ao_integrals_threshold
|
|
|
|
allocate(schwartz_kl(0:ao_prim_num(l),0:ao_prim_num(k)))
|
|
|
|
double precision :: coef3
|
|
double precision :: coef2
|
|
double precision :: p_inv,q_inv
|
|
double precision :: coef1
|
|
double precision :: coef4
|
|
|
|
do p = 1, 3
|
|
I_power(p) = ao_power(i,p)
|
|
J_power(p) = ao_power(j,p)
|
|
K_power(p) = ao_power(k,p)
|
|
L_power(p) = ao_power(l,p)
|
|
I_center(p) = nucl_coord(num_i,p)
|
|
J_center(p) = nucl_coord(num_j,p)
|
|
K_center(p) = nucl_coord(num_k,p)
|
|
L_center(p) = nucl_coord(num_l,p)
|
|
enddo
|
|
|
|
schwartz_kl(0,0) = 0.d0
|
|
do r = 1, ao_prim_num(k)
|
|
coef1 = ao_coef_normalized_ordered_transp(r,k)*ao_coef_normalized_ordered_transp(r,k)
|
|
schwartz_kl(0,r) = 0.d0
|
|
do s = 1, ao_prim_num(l)
|
|
coef2 = coef1 * ao_coef_normalized_ordered_transp(s,l) * ao_coef_normalized_ordered_transp(s,l)
|
|
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
|
|
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
|
|
K_power,L_power,K_center,L_center,dim1)
|
|
q_inv = 1.d0/qq
|
|
scw_gauss_int = general_primitive_integral_gauss(dim1, &
|
|
Q_new,Q_center,fact_q,qq,q_inv,iorder_q, &
|
|
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
|
|
|
|
schwartz_kl(s,r) = dabs(scw_gauss_int * coef2)
|
|
schwartz_kl(0,r) = max(schwartz_kl(0,r),schwartz_kl(s,r))
|
|
enddo
|
|
schwartz_kl(0,0) = max(schwartz_kl(0,r),schwartz_kl(0,0))
|
|
enddo
|
|
do p = 1, ao_prim_num(i)
|
|
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
|
do q = 1, ao_prim_num(j)
|
|
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
|
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
|
|
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
|
|
I_power,J_power,I_center,J_center,dim1)
|
|
p_inv = 1.d0/pp
|
|
scw_gauss_int = general_primitive_integral_gauss(dim1, &
|
|
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
|
|
P_new,P_center,fact_p,pp,p_inv,iorder_p)
|
|
schwartz_ij = dabs(scw_gauss_int * coef2*coef2)
|
|
if (schwartz_kl(0,0)*schwartz_ij < thr) then
|
|
cycle
|
|
endif
|
|
do r = 1, ao_prim_num(k)
|
|
if (schwartz_kl(0,r)*schwartz_ij < thr) then
|
|
cycle
|
|
endif
|
|
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
|
do s = 1, ao_prim_num(l)
|
|
if (schwartz_kl(s,r)*schwartz_ij < thr) then
|
|
cycle
|
|
endif
|
|
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
|
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q, &
|
|
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
|
|
K_power,L_power,K_center,L_center,dim1)
|
|
q_inv = 1.d0/qq
|
|
integral = general_primitive_integral_gauss(dim1, &
|
|
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
|
|
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
|
|
ao_tc_sym_two_e_pot = ao_tc_sym_two_e_pot + coef4 * integral
|
|
enddo ! s
|
|
enddo ! r
|
|
enddo ! q
|
|
enddo ! p
|
|
|
|
deallocate (schwartz_kl)
|
|
|
|
end
|
|
|
|
|
|
double precision function general_primitive_integral_gauss(dim, &
|
|
P_new,P_center,fact_p,p,p_inv,iorder_p, &
|
|
Q_new,Q_center,fact_q,q,q_inv,iorder_q)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Computes the integral <pq|rs> where p,q,r,s are Gaussian primitives
|
|
END_DOC
|
|
integer,intent(in) :: dim
|
|
include 'utils/constants.include.F'
|
|
double precision, intent(in) :: P_new(0:max_dim,3),P_center(3),fact_p,p,p_inv
|
|
double precision, intent(in) :: Q_new(0:max_dim,3),Q_center(3),fact_q,q,q_inv
|
|
integer, intent(in) :: iorder_p(3)
|
|
integer, intent(in) :: iorder_q(3)
|
|
|
|
double precision :: r_cut,gama_r_cut,rho,dist
|
|
double precision :: dx(0:max_dim),Ix_pol(0:max_dim),dy(0:max_dim),Iy_pol(0:max_dim),dz(0:max_dim),Iz_pol(0:max_dim)
|
|
integer :: n_Ix,n_Iy,n_Iz,nx,ny,nz
|
|
double precision :: bla
|
|
integer :: ix,iy,iz,jx,jy,jz,i
|
|
double precision :: a,b,c,d,e,f,accu,pq,const
|
|
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2,pq_inv_2
|
|
integer :: n_pt_tmp,n_pt_out, iorder
|
|
double precision :: d1(0:max_dim),d_poly(0:max_dim),rint,d1_screened(0:max_dim)
|
|
double precision :: thr
|
|
|
|
thr = ao_integrals_threshold
|
|
|
|
general_primitive_integral_gauss = 0.d0
|
|
|
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx,Ix_pol,dy,Iy_pol,dz,Iz_pol
|
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
|
|
|
! Gaussian Product
|
|
! ----------------
|
|
|
|
pq = p_inv*0.5d0*q_inv
|
|
pq_inv = 0.5d0/(p+q)
|
|
p10_1 = q*pq ! 1/(2p)
|
|
p01_1 = p*pq ! 1/(2q)
|
|
pq_inv_2 = pq_inv+pq_inv
|
|
p10_2 = pq_inv_2 * p10_1*q !0.5d0*q/(pq + p*p)
|
|
p01_2 = pq_inv_2 * p01_1*p !0.5d0*p/(q*q + pq)
|
|
|
|
|
|
accu = 0.d0
|
|
iorder = iorder_p(1)+iorder_q(1)+iorder_p(1)+iorder_q(1)
|
|
do ix=0,iorder
|
|
Ix_pol(ix) = 0.d0
|
|
enddo
|
|
n_Ix = 0
|
|
do ix = 0, iorder_p(1)
|
|
if (abs(P_new(ix,1)) < thr) cycle
|
|
a = P_new(ix,1)
|
|
do jx = 0, iorder_q(1)
|
|
d = a*Q_new(jx,1)
|
|
if (abs(d) < thr) cycle
|
|
!DIR$ FORCEINLINE
|
|
call give_polynom_mult_center_x(P_center(1),Q_center(1),ix,jx,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dx,nx)
|
|
!DIR$ FORCEINLINE
|
|
call add_poly_multiply(dx,nx,d,Ix_pol,n_Ix)
|
|
enddo
|
|
enddo
|
|
if (n_Ix == -1) then
|
|
return
|
|
endif
|
|
iorder = iorder_p(2)+iorder_q(2)+iorder_p(2)+iorder_q(2)
|
|
do ix=0, iorder
|
|
Iy_pol(ix) = 0.d0
|
|
enddo
|
|
n_Iy = 0
|
|
do iy = 0, iorder_p(2)
|
|
if (abs(P_new(iy,2)) > thr) then
|
|
b = P_new(iy,2)
|
|
do jy = 0, iorder_q(2)
|
|
e = b*Q_new(jy,2)
|
|
if (abs(e) < thr) cycle
|
|
!DIR$ FORCEINLINE
|
|
call give_polynom_mult_center_x(P_center(2),Q_center(2),iy,jy,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dy,ny)
|
|
!DIR$ FORCEINLINE
|
|
call add_poly_multiply(dy,ny,e,Iy_pol,n_Iy)
|
|
enddo
|
|
endif
|
|
enddo
|
|
if (n_Iy == -1) then
|
|
return
|
|
endif
|
|
|
|
iorder = iorder_p(3)+iorder_q(3)+iorder_p(3)+iorder_q(3)
|
|
do ix=0,iorder
|
|
Iz_pol(ix) = 0.d0
|
|
enddo
|
|
n_Iz = 0
|
|
do iz = 0, iorder_p(3)
|
|
if (abs(P_new(iz,3)) > thr) then
|
|
c = P_new(iz,3)
|
|
do jz = 0, iorder_q(3)
|
|
f = c*Q_new(jz,3)
|
|
if (abs(f) < thr) cycle
|
|
!DIR$ FORCEINLINE
|
|
call give_polynom_mult_center_x(P_center(3),Q_center(3),iz,jz,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dz,nz)
|
|
!DIR$ FORCEINLINE
|
|
call add_poly_multiply(dz,nz,f,Iz_pol,n_Iz)
|
|
enddo
|
|
endif
|
|
enddo
|
|
if (n_Iz == -1) then
|
|
return
|
|
endif
|
|
|
|
rho = p*q *pq_inv_2
|
|
dist = (P_center(1) - Q_center(1))*(P_center(1) - Q_center(1)) + &
|
|
(P_center(2) - Q_center(2))*(P_center(2) - Q_center(2)) + &
|
|
(P_center(3) - Q_center(3))*(P_center(3) - Q_center(3))
|
|
const = dist*rho
|
|
|
|
n_pt_tmp = n_Ix+n_Iy
|
|
do i=0,n_pt_tmp
|
|
d_poly(i)=0.d0
|
|
enddo
|
|
|
|
!DIR$ FORCEINLINE
|
|
call multiply_poly(Ix_pol,n_Ix,Iy_pol,n_Iy,d_poly,n_pt_tmp)
|
|
if (n_pt_tmp == -1) then
|
|
return
|
|
endif
|
|
n_pt_out = n_pt_tmp+n_Iz
|
|
do i=0,n_pt_out
|
|
d1(i)=0.d0
|
|
enddo
|
|
|
|
!DIR$ FORCEINLINE
|
|
call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out)
|
|
|
|
double precision :: aa,c_a,t_a,rho_old,w_a,pi_3,prefactor,inv_pq_3_2
|
|
double precision :: gauss_int
|
|
integer :: m
|
|
gauss_int = 0.d0
|
|
pi_3 = pi*pi*pi
|
|
inv_pq_3_2 = (p_inv * q_inv)**(1.5d0)
|
|
rho_old = (p*q)/(p+q)
|
|
prefactor = pi_3 * inv_pq_3_2 * fact_p * fact_q
|
|
do i = 1, n_gauss_eff_pot ! browse the gaussians with different expo/coef
|
|
!do i = 1, n_gauss_eff_pot-1
|
|
aa = expo_gauss_eff_pot(i)
|
|
c_a = coef_gauss_eff_pot(i)
|
|
t_a = dsqrt( aa /(rho_old + aa) )
|
|
w_a = dexp(-t_a*t_a*rho_old*dist)
|
|
accu = 0.d0
|
|
! evaluation of the polynom Ix(t_a) * Iy(t_a) * Iz(t_a)
|
|
do m = 0, n_pt_out,2
|
|
accu += d1(m) * (t_a)**(dble(m))
|
|
enddo
|
|
! equation A8 of PRA-70-062505 (2004) of Toul. Col. Sav.
|
|
gauss_int = gauss_int + c_a * prefactor * (1.d0 - t_a*t_a)**(1.5d0) * w_a * accu
|
|
enddo
|
|
|
|
general_primitive_integral_gauss = gauss_int
|
|
end
|
|
|
|
subroutine compute_ao_integrals_gauss_jl(j,l,n_integrals,buffer_i,buffer_value)
|
|
implicit none
|
|
use map_module
|
|
BEGIN_DOC
|
|
! Parallel client for AO integrals
|
|
END_DOC
|
|
|
|
integer, intent(in) :: j,l
|
|
integer,intent(out) :: n_integrals
|
|
integer(key_kind),intent(out) :: buffer_i(ao_num*ao_num)
|
|
real(integral_kind),intent(out) :: buffer_value(ao_num*ao_num)
|
|
|
|
integer :: i,k
|
|
double precision :: cpu_1,cpu_2, wall_1, wall_2
|
|
double precision :: integral, wall_0
|
|
double precision :: thr,ao_tc_sym_two_e_pot
|
|
integer :: kk, m, j1, i1
|
|
logical, external :: ao_two_e_integral_zero
|
|
|
|
thr = ao_integrals_threshold
|
|
|
|
n_integrals = 0
|
|
|
|
j1 = j+ishft(l*l-l,-1)
|
|
do k = 1, ao_num ! r1
|
|
i1 = ishft(k*k-k,-1)
|
|
if (i1 > j1) then
|
|
exit
|
|
endif
|
|
do i = 1, k
|
|
i1 += 1
|
|
if (i1 > j1) then
|
|
exit
|
|
endif
|
|
! if (ao_two_e_integral_zero(i,j,k,l)) then
|
|
if (.False.) then
|
|
cycle
|
|
endif
|
|
if (ao_two_e_integral_erf_schwartz(i,k)*ao_two_e_integral_erf_schwartz(j,l) < thr ) then
|
|
cycle
|
|
endif
|
|
!DIR$ FORCEINLINE
|
|
integral = ao_tc_sym_two_e_pot(i,k,j,l) ! i,k : r1 j,l : r2
|
|
if (abs(integral) < thr) then
|
|
cycle
|
|
endif
|
|
n_integrals += 1
|
|
!DIR$ FORCEINLINE
|
|
call two_e_integrals_index(i,j,k,l,buffer_i(n_integrals))
|
|
buffer_value(n_integrals) = integral
|
|
enddo
|
|
enddo
|
|
|
|
end
|