9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-10-06 16:15:57 +02:00
qp2/plugins/local/ao_many_one_e_ints/stg_gauss_int.irp.f

122 lines
4.5 KiB
Fortran

double precision function ovlp_stg_gauss_int_phi_ij(D_center,gam,delta,A_center,B_center,power_A,power_B,alpha,beta)
BEGIN_DOC
! Computes the following integral :
!
! .. math::
!
! \int dr exp(-gam (r - D)) exp(-delta * (r -D)^2) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
!
END_DOC
implicit none
double precision, intent(in) :: D_center(3), gam ! pure Slater "D" in r-r_D
double precision, intent(in) :: delta ! gaussian in r-r_D
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
integer, intent(in) :: power_A(3),power_B(3)
integer :: i
double precision :: integral,gama_gauss
double precision, allocatable :: expos_slat(:)
allocate(expos_slat(n_max_fit_slat))
double precision :: overlap_gauss_r12
ovlp_stg_gauss_int_phi_ij = 0.d0
call expo_fit_slater_gam(gam,expos_slat)
do i = 1, n_max_fit_slat
gama_gauss = expos_slat(i)+delta
integral = overlap_gauss_r12(D_center,gama_gauss,A_center,B_center,power_A,power_B,alpha,beta)
ovlp_stg_gauss_int_phi_ij += coef_fit_slat_gauss(i) * integral
enddo
end
double precision function erf_mu_stg_gauss_int_phi_ij(D_center,gam,delta,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
BEGIN_DOC
! Computes the following integral :
!
! .. math::
!
! \int dr exp(-gam(r - D)-delta(r - D)^2) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
! \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
implicit none
include 'constants.include.F'
double precision, intent(in) :: D_center(3), gam ! pure Slater "D" in r-r_D
double precision, intent(in) :: delta ! gaussian in r-r_D
double precision, intent(in) :: C_center(3),mu ! coulomb center "C" and "mu" in the erf(mu*x)/x function
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
integer, intent(in) :: power_A(3),power_B(3)
integer :: i
double precision :: NAI_pol_mult_erf_gauss_r12
double precision :: integral,gama_gauss
double precision, allocatable :: expos_slat(:)
allocate(expos_slat(n_max_fit_slat))
erf_mu_stg_gauss_int_phi_ij = 0.d0
call expo_fit_slater_gam(gam,expos_slat)
do i = 1, n_max_fit_slat
gama_gauss = expos_slat(i) + delta
integral = NAI_pol_mult_erf_gauss_r12(D_center,gama_gauss,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
erf_mu_stg_gauss_int_phi_ij += coef_fit_slat_gauss(i) * integral
enddo
end
double precision function overlap_stg_gauss(D_center,gam,A_center,B_center,power_A,power_B,alpha,beta)
BEGIN_DOC
! Computes the following integral :
!
! .. math::
!
! \int dr exp(-gam (r - D)) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
!
END_DOC
implicit none
double precision, intent(in) :: D_center(3), gam ! pure Slater "D"
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
integer, intent(in) :: power_A(3),power_B(3)
integer :: i
double precision :: expos_slat(n_max_fit_slat),integral,delta
double precision :: overlap_gauss_r12
overlap_stg_gauss = 0.d0
call expo_fit_slater_gam(gam,expos_slat)
do i = 1, n_max_fit_slat
delta = expos_slat(i)
integral = overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
overlap_stg_gauss += coef_fit_slat_gauss(i) * integral
enddo
end
double precision function erf_mu_stg_gauss(D_center,gam,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
BEGIN_DOC
! Computes the following integral :
!
! .. math::
!
! \int dr exp(-gam(r - D)) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
! \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
implicit none
include 'constants.include.F'
double precision, intent(in) :: D_center(3), gam ! pure Slater "D"
double precision, intent(in) :: C_center(3),mu ! coulomb center "C" and "mu" in the erf(mu*x)/x function
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
integer, intent(in) :: power_A(3),power_B(3)
integer :: i
double precision :: expos_slat(n_max_fit_slat),integral,delta
double precision :: NAI_pol_mult_erf_gauss_r12
erf_mu_stg_gauss = 0.d0
call expo_fit_slater_gam(gam,expos_slat)
do i = 1, n_max_fit_slat
delta = expos_slat(i)
integral = NAI_pol_mult_erf_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
erf_mu_stg_gauss += coef_fit_slat_gauss(i) * integral
enddo
end