mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-10-06 16:15:57 +02:00
506 lines
15 KiB
Fortran
506 lines
15 KiB
Fortran
! ---
|
|
|
|
subroutine overlap_gauss_xyz_r12_ao(D_center,delta,i,j,gauss_ints)
|
|
|
|
implicit none
|
|
BEGIN_DOC
|
|
! gauss_ints(m) = \int dr AO_i(r) AO_j(r) x/y/z e^{-delta |r-D_center|^2}
|
|
!
|
|
! with m == 1 ==> x, m == 2 ==> y, m == 3 ==> z
|
|
END_DOC
|
|
integer, intent(in) :: i,j
|
|
double precision, intent(in) :: D_center(3), delta
|
|
double precision, intent(out) :: gauss_ints(3)
|
|
|
|
integer :: num_a,num_b,power_A(3), power_B(3),l,k,m
|
|
double precision :: A_center(3), B_center(3),overlap_gauss_r12,alpha,beta,gauss_ints_tmp(3)
|
|
gauss_ints = 0.d0
|
|
if(ao_overlap_abs(j,i).lt.1.d-12)then
|
|
return
|
|
endif
|
|
num_A = ao_nucl(i)
|
|
power_A(1:3)= ao_power(i,1:3)
|
|
A_center(1:3) = nucl_coord(num_A,1:3)
|
|
num_B = ao_nucl(j)
|
|
power_B(1:3)= ao_power(j,1:3)
|
|
B_center(1:3) = nucl_coord(num_B,1:3)
|
|
do l=1,ao_prim_num(i)
|
|
alpha = ao_expo_ordered_transp(l,i)
|
|
do k=1,ao_prim_num(j)
|
|
beta = ao_expo_ordered_transp(k,j)
|
|
call overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,gauss_ints_tmp)
|
|
do m = 1, 3
|
|
gauss_ints(m) += gauss_ints_tmp(m) * ao_coef_normalized_ordered_transp(l,i) &
|
|
* ao_coef_normalized_ordered_transp(k,j)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
end
|
|
|
|
|
|
|
|
double precision function overlap_gauss_xyz_r12_ao_specific(D_center,delta,i,j,mx)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! \int dr AO_i(r) AO_j(r) x/y/z e^{-delta |r-D_center|^2}
|
|
!
|
|
! with mx == 1 ==> x, mx == 2 ==> y, mx == 3 ==> z
|
|
END_DOC
|
|
integer, intent(in) :: i,j,mx
|
|
double precision, intent(in) :: D_center(3), delta
|
|
|
|
integer :: num_a,num_b,power_A(3), power_B(3),l,k
|
|
double precision :: gauss_int
|
|
double precision :: A_center(3), B_center(3),overlap_gauss_r12,alpha,beta
|
|
double precision :: overlap_gauss_xyz_r12_specific
|
|
overlap_gauss_xyz_r12_ao_specific = 0.d0
|
|
if(ao_overlap_abs(j,i).lt.1.d-12)then
|
|
return
|
|
endif
|
|
num_A = ao_nucl(i)
|
|
power_A(1:3)= ao_power(i,1:3)
|
|
A_center(1:3) = nucl_coord(num_A,1:3)
|
|
num_B = ao_nucl(j)
|
|
power_B(1:3)= ao_power(j,1:3)
|
|
B_center(1:3) = nucl_coord(num_B,1:3)
|
|
do l=1,ao_prim_num(i)
|
|
alpha = ao_expo_ordered_transp(l,i)
|
|
do k=1,ao_prim_num(j)
|
|
beta = ao_expo_ordered_transp(k,j)
|
|
gauss_int = overlap_gauss_xyz_r12_specific(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,mx)
|
|
overlap_gauss_xyz_r12_ao_specific = gauss_int * ao_coef_normalized_ordered_transp(l,i) &
|
|
* ao_coef_normalized_ordered_transp(k,j)
|
|
enddo
|
|
enddo
|
|
end
|
|
|
|
|
|
subroutine overlap_gauss_r12_all_ao(D_center,delta,aos_ints)
|
|
implicit none
|
|
double precision, intent(in) :: D_center(3), delta
|
|
double precision, intent(out):: aos_ints(ao_num,ao_num)
|
|
|
|
integer :: num_a,num_b,power_A(3), power_B(3),l,k,i,j
|
|
double precision :: A_center(3), B_center(3),overlap_gauss_r12,alpha,beta,analytical_j
|
|
aos_ints = 0.d0
|
|
do i = 1, ao_num
|
|
do j = 1, ao_num
|
|
if(ao_overlap_abs(j,i).lt.1.d-12)cycle
|
|
num_A = ao_nucl(i)
|
|
power_A(1:3)= ao_power(i,1:3)
|
|
A_center(1:3) = nucl_coord(num_A,1:3)
|
|
num_B = ao_nucl(j)
|
|
power_B(1:3)= ao_power(j,1:3)
|
|
B_center(1:3) = nucl_coord(num_B,1:3)
|
|
do l=1,ao_prim_num(i)
|
|
alpha = ao_expo_ordered_transp(l,i)
|
|
do k=1,ao_prim_num(j)
|
|
beta = ao_expo_ordered_transp(k,j)
|
|
analytical_j = overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
|
aos_ints(j,i) += analytical_j * ao_coef_normalized_ordered_transp(l,i) &
|
|
* ao_coef_normalized_ordered_transp(k,j)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
end
|
|
|
|
! ---
|
|
|
|
! TODO :: PUT CYCLES IN LOOPS
|
|
double precision function overlap_gauss_r12_ao(D_center, delta, i, j)
|
|
|
|
BEGIN_DOC
|
|
! \int dr AO_i(r) AO_j(r) e^{-delta |r-D_center|^2}
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer, intent(in) :: i, j
|
|
double precision, intent(in) :: D_center(3), delta
|
|
|
|
integer :: power_A(3), power_B(3), l, k
|
|
double precision :: A_center(3), B_center(3), alpha, beta, coef, coef1, analytical_j
|
|
|
|
double precision, external :: overlap_gauss_r12
|
|
|
|
overlap_gauss_r12_ao = 0.d0
|
|
|
|
if(ao_overlap_abs(j,i).lt.1.d-12) then
|
|
return
|
|
endif
|
|
|
|
power_A(1:3) = ao_power(i,1:3)
|
|
power_B(1:3) = ao_power(j,1:3)
|
|
|
|
A_center(1:3) = nucl_coord(ao_nucl(i),1:3)
|
|
B_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
|
|
|
do l = 1, ao_prim_num(i)
|
|
alpha = ao_expo_ordered_transp (l,i)
|
|
coef1 = ao_coef_normalized_ordered_transp(l,i)
|
|
|
|
do k = 1, ao_prim_num(j)
|
|
beta = ao_expo_ordered_transp(k,j)
|
|
coef = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
|
|
|
if(dabs(coef) .lt. 1d-12) cycle
|
|
|
|
analytical_j = overlap_gauss_r12(D_center, delta, A_center, B_center, power_A, power_B, alpha, beta)
|
|
|
|
overlap_gauss_r12_ao += coef * analytical_j
|
|
enddo
|
|
enddo
|
|
|
|
end
|
|
|
|
! --
|
|
|
|
double precision function overlap_abs_gauss_r12_ao(D_center, delta, i, j)
|
|
|
|
BEGIN_DOC
|
|
! \int dr AO_i(r) AO_j(r) e^{-delta |r-D_center|^2}
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer, intent(in) :: i, j
|
|
double precision, intent(in) :: D_center(3), delta
|
|
|
|
integer :: power_A(3), power_B(3), l, k
|
|
double precision :: A_center(3), B_center(3), alpha, beta, coef, coef1, analytical_j
|
|
|
|
double precision, external :: overlap_abs_gauss_r12
|
|
|
|
overlap_abs_gauss_r12_ao = 0.d0
|
|
|
|
if(ao_overlap_abs(j,i).lt.1.d-12) then
|
|
return
|
|
endif
|
|
|
|
power_A(1:3) = ao_power(i,1:3)
|
|
power_B(1:3) = ao_power(j,1:3)
|
|
|
|
A_center(1:3) = nucl_coord(ao_nucl(i),1:3)
|
|
B_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
|
|
|
do l = 1, ao_prim_num(i)
|
|
alpha = ao_expo_ordered_transp (l,i)
|
|
coef1 = ao_coef_normalized_ordered_transp(l,i)
|
|
|
|
do k = 1, ao_prim_num(j)
|
|
beta = ao_expo_ordered_transp(k,j)
|
|
coef = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
|
|
|
if(dabs(coef) .lt. 1d-12) cycle
|
|
|
|
analytical_j = overlap_abs_gauss_r12(D_center, delta, A_center, B_center, power_A, power_B, alpha, beta)
|
|
|
|
overlap_abs_gauss_r12_ao += dabs(coef * analytical_j)
|
|
enddo
|
|
enddo
|
|
|
|
end
|
|
|
|
! --
|
|
|
|
subroutine overlap_gauss_r12_ao_v(D_center, LD_D, delta, i, j, resv, LD_resv, n_points)
|
|
|
|
BEGIN_DOC
|
|
!
|
|
! \int dr AO_i(r) AO_j(r) e^{-delta |r-D_center|^2}
|
|
!
|
|
! n_points: nb of integrals <= min(LD_D, LD_resv)
|
|
!
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer, intent(in) :: i, j, LD_D, LD_resv, n_points
|
|
double precision, intent(in) :: D_center(LD_D,3), delta
|
|
double precision, intent(out) :: resv(LD_resv)
|
|
|
|
integer :: ipoint
|
|
integer :: power_A(3), power_B(3), l, k
|
|
double precision :: A_center(3), B_center(3), alpha, beta, coef, coef1
|
|
double precision, allocatable :: analytical_j(:)
|
|
|
|
resv(:) = 0.d0
|
|
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
|
|
return
|
|
endif
|
|
|
|
power_A(1:3) = ao_power(i,1:3)
|
|
power_B(1:3) = ao_power(j,1:3)
|
|
|
|
A_center(1:3) = nucl_coord(ao_nucl(i),1:3)
|
|
B_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
|
|
|
allocate(analytical_j(n_points))
|
|
|
|
do l = 1, ao_prim_num(i)
|
|
alpha = ao_expo_ordered_transp (l,i)
|
|
coef1 = ao_coef_normalized_ordered_transp(l,i)
|
|
|
|
do k = 1, ao_prim_num(j)
|
|
beta = ao_expo_ordered_transp(k,j)
|
|
coef = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
|
|
|
if(dabs(coef) .lt. 1d-12) cycle
|
|
|
|
call overlap_gauss_r12_v(D_center, LD_D, delta, A_center, B_center, power_A, power_B, alpha, beta, analytical_j, n_points, n_points)
|
|
|
|
do ipoint = 1, n_points
|
|
resv(ipoint) = resv(ipoint) + coef * analytical_j(ipoint)
|
|
enddo
|
|
|
|
enddo
|
|
enddo
|
|
|
|
deallocate(analytical_j)
|
|
|
|
end
|
|
|
|
! ---
|
|
|
|
double precision function overlap_gauss_r12_ao_with1s(B_center, beta, D_center, delta, i, j)
|
|
|
|
BEGIN_DOC
|
|
!
|
|
! \int dr AO_i(r) AO_j(r) e^{-beta |r-B_center^2|} e^{-delta |r-D_center|^2}
|
|
!
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer, intent(in) :: i, j
|
|
double precision, intent(in) :: B_center(3), beta, D_center(3), delta
|
|
|
|
integer :: power_A1(3), power_A2(3), l, k
|
|
double precision :: A1_center(3), A2_center(3), alpha1, alpha2, coef1, coef12, analytical_j
|
|
double precision :: G_center(3), gama, fact_g, gama_inv
|
|
|
|
double precision, external :: overlap_gauss_r12, overlap_gauss_r12_ao
|
|
|
|
if(beta .lt. 1d-10) then
|
|
overlap_gauss_r12_ao_with1s = overlap_gauss_r12_ao(D_center, delta, i, j)
|
|
return
|
|
endif
|
|
|
|
overlap_gauss_r12_ao_with1s = 0.d0
|
|
|
|
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
|
|
return
|
|
endif
|
|
|
|
! e^{-beta |r-B_center^2|} e^{-delta |r-D_center|^2} = fact_g e^{-gama |r - G|^2}
|
|
|
|
gama = beta + delta
|
|
gama_inv = 1.d0 / gama
|
|
G_center(1) = (beta * B_center(1) + delta * D_center(1)) * gama_inv
|
|
G_center(2) = (beta * B_center(2) + delta * D_center(2)) * gama_inv
|
|
G_center(3) = (beta * B_center(3) + delta * D_center(3)) * gama_inv
|
|
fact_g = beta * delta * gama_inv * ( (B_center(1) - D_center(1)) * (B_center(1) - D_center(1)) &
|
|
+ (B_center(2) - D_center(2)) * (B_center(2) - D_center(2)) &
|
|
+ (B_center(3) - D_center(3)) * (B_center(3) - D_center(3)) )
|
|
if(fact_g .gt. 10d0) return
|
|
fact_g = dexp(-fact_g)
|
|
|
|
! ---
|
|
|
|
power_A1(1:3) = ao_power(i,1:3)
|
|
power_A2(1:3) = ao_power(j,1:3)
|
|
|
|
A1_center(1:3) = nucl_coord(ao_nucl(i),1:3)
|
|
A2_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
|
|
|
do l = 1, ao_prim_num(i)
|
|
alpha1 = ao_expo_ordered_transp (l,i)
|
|
coef1 = fact_g * ao_coef_normalized_ordered_transp(l,i)
|
|
if(dabs(coef1) .lt. 1d-12) cycle
|
|
|
|
do k = 1, ao_prim_num(j)
|
|
alpha2 = ao_expo_ordered_transp (k,j)
|
|
coef12 = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
|
if(dabs(coef12) .lt. 1d-12) cycle
|
|
|
|
analytical_j = overlap_gauss_r12(G_center, gama, A1_center, A2_center, power_A1, power_A2, alpha1, alpha2)
|
|
|
|
overlap_gauss_r12_ao_with1s += coef12 * analytical_j
|
|
enddo
|
|
enddo
|
|
|
|
end
|
|
|
|
! ---
|
|
|
|
subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, LD_D, delta, i, j, resv, LD_resv, n_points)
|
|
|
|
BEGIN_DOC
|
|
!
|
|
! \int dr AO_i(r) AO_j(r) e^{-beta |r-B_center^2|} e^{-delta |r-D_center|^2}
|
|
! using an array of D_centers.
|
|
!
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer, intent(in) :: i, j, n_points, LD_D, LD_resv
|
|
double precision, intent(in) :: B_center(3), beta, D_center(LD_D,3), delta
|
|
double precision, intent(out) :: resv(LD_resv)
|
|
|
|
integer :: ipoint
|
|
integer :: power_A1(3), power_A2(3), l, k
|
|
double precision :: A1_center(3), A2_center(3), alpha1, alpha2, coef1
|
|
double precision :: coef12, coef12f
|
|
double precision :: gama, gama_inv
|
|
double precision :: bg, dg, bdg
|
|
double precision, allocatable :: fact_g(:), G_center(:,:), analytical_j(:)
|
|
|
|
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
|
|
return
|
|
endif
|
|
|
|
ASSERT(beta .gt. 0.d0)
|
|
|
|
if(beta .lt. 1d-10) then
|
|
call overlap_gauss_r12_ao_v(D_center, LD_D, delta, i, j, resv, LD_resv, n_points)
|
|
return
|
|
endif
|
|
|
|
resv(:) = 0.d0
|
|
|
|
! e^{-beta |r-B_center^2|} e^{-delta |r-D_center|^2} = fact_g e^{-gama |r - G|^2}
|
|
|
|
gama = beta + delta
|
|
gama_inv = 1.d0 / gama
|
|
|
|
power_A1(1:3) = ao_power(i,1:3)
|
|
power_A2(1:3) = ao_power(j,1:3)
|
|
|
|
A1_center(1:3) = nucl_coord(ao_nucl(i),1:3)
|
|
A2_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
|
|
|
allocate(fact_g(n_points), G_center(n_points,3), analytical_j(n_points))
|
|
|
|
bg = beta * gama_inv
|
|
dg = delta * gama_inv
|
|
bdg = bg * delta
|
|
|
|
do ipoint = 1, n_points
|
|
|
|
G_center(ipoint,1) = bg * B_center(1) + dg * D_center(ipoint,1)
|
|
G_center(ipoint,2) = bg * B_center(2) + dg * D_center(ipoint,2)
|
|
G_center(ipoint,3) = bg * B_center(3) + dg * D_center(ipoint,3)
|
|
fact_g(ipoint) = bdg * ( (B_center(1) - D_center(ipoint,1)) * (B_center(1) - D_center(ipoint,1)) &
|
|
+ (B_center(2) - D_center(ipoint,2)) * (B_center(2) - D_center(ipoint,2)) &
|
|
+ (B_center(3) - D_center(ipoint,3)) * (B_center(3) - D_center(ipoint,3)) )
|
|
|
|
if(fact_g(ipoint) < 10d0) then
|
|
fact_g(ipoint) = dexp(-fact_g(ipoint))
|
|
else
|
|
fact_g(ipoint) = 0.d0
|
|
endif
|
|
|
|
enddo
|
|
|
|
do l = 1, ao_prim_num(i)
|
|
alpha1 = ao_expo_ordered_transp (l,i)
|
|
coef1 = ao_coef_normalized_ordered_transp(l,i)
|
|
|
|
do k = 1, ao_prim_num(j)
|
|
alpha2 = ao_expo_ordered_transp (k,j)
|
|
coef12 = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
|
if(dabs(coef12) .lt. 1d-12) cycle
|
|
|
|
call overlap_gauss_r12_v(G_center, n_points, gama, A1_center, A2_center, power_A1, power_A2, alpha1, alpha2, analytical_j, n_points, n_points)
|
|
|
|
do ipoint = 1, n_points
|
|
coef12f = coef12 * fact_g(ipoint)
|
|
resv(ipoint) += coef12f * analytical_j(ipoint)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
deallocate(fact_g, G_center, analytical_j)
|
|
|
|
end
|
|
|
|
! ---
|
|
|
|
subroutine overlap_gauss_r12_ao_012(D_center, delta, i, j, ints)
|
|
|
|
BEGIN_DOC
|
|
!
|
|
! Computes the following integrals :
|
|
!
|
|
! ints(1) = $\int_{-\infty}^{infty} dr x^0 * \chi_i(r) \chi_j(r) e^{-\delta (r - D_center)^2}
|
|
!
|
|
! ints(2) = $\int_{-\infty}^{infty} dr x^1 * \chi_i(r) \chi_j(r) e^{-\delta (r - D_center)^2}
|
|
! ints(3) = $\int_{-\infty}^{infty} dr y^1 * \chi_i(r) \chi_j(r) e^{-\delta (r - D_center)^2}
|
|
! ints(4) = $\int_{-\infty}^{infty} dr z^1 * \chi_i(r) \chi_j(r) e^{-\delta (r - D_center)^2}
|
|
!
|
|
! ints(5) = $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) e^{-\delta (r - D_center)^2}
|
|
! ints(6) = $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) e^{-\delta (r - D_center)^2}
|
|
! ints(7) = $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) e^{-\delta (r - D_center)^2}
|
|
!
|
|
END_DOC
|
|
|
|
include 'utils/constants.include.F'
|
|
|
|
implicit none
|
|
|
|
integer, intent(in) :: i, j
|
|
double precision, intent(in) :: delta, D_center(3)
|
|
double precision, intent(out) :: ints(7)
|
|
|
|
integer :: k, l, m
|
|
integer :: power_A(3), power_B(3), power_A1(3), power_A2(3)
|
|
double precision :: A_center(3), B_center(3), alpha, beta, coef1, coef
|
|
double precision :: integral0, integral1, integral2
|
|
|
|
double precision, external :: overlap_gauss_r12
|
|
|
|
ints = 0.d0
|
|
|
|
if(ao_overlap_abs(j,i).lt.1.d-12) then
|
|
return
|
|
endif
|
|
|
|
power_A(1:3) = ao_power(i,1:3)
|
|
power_B(1:3) = ao_power(j,1:3)
|
|
|
|
A_center(1:3) = nucl_coord(ao_nucl(i),1:3)
|
|
B_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
|
|
|
do l = 1, ao_prim_num(i)
|
|
alpha = ao_expo_ordered_transp (l,i)
|
|
coef1 = ao_coef_normalized_ordered_transp(l,i)
|
|
|
|
do k = 1, ao_prim_num(j)
|
|
beta = ao_expo_ordered_transp(k,j)
|
|
coef = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
|
|
|
if(dabs(coef) .lt. 1d-12) cycle
|
|
|
|
integral0 = overlap_gauss_r12(D_center, delta, A_center, B_center, power_A, power_B, alpha, beta)
|
|
|
|
ints(1) += coef * integral0
|
|
|
|
do m = 1, 3
|
|
power_A1 = power_A
|
|
power_A1(m) += 1
|
|
integral1 = overlap_gauss_r12(D_center, delta, A_center, B_center, power_A1, power_B, alpha, beta)
|
|
ints(1+m) += coef * (integral1 + A_center(m)*integral0)
|
|
|
|
power_A2 = power_A
|
|
power_A2(m) += 2
|
|
integral2 = overlap_gauss_r12(D_center, delta, A_center, B_center, power_A2, power_B, alpha, beta)
|
|
ints(4+m) += coef * (integral2 + A_center(m) * (2.d0*integral1 + A_center(m)*integral0))
|
|
enddo
|
|
|
|
enddo ! k
|
|
enddo ! l
|
|
|
|
return
|
|
end
|
|
|
|
! ---
|
|
|