qp2/src/csf/sigma_vector.irp.f

1888 lines
64 KiB
Fortran

BEGIN_PROVIDER [ integer, NSOMOMax]
&BEGIN_PROVIDER [ integer, NSOMOMin]
&BEGIN_PROVIDER [ integer, NCSFMax]
&BEGIN_PROVIDER [ integer*8, NMO]
&BEGIN_PROVIDER [ integer, NBFMax]
&BEGIN_PROVIDER [ integer, n_CSF]
&BEGIN_PROVIDER [ integer, maxDetDimPerBF]
implicit none
BEGIN_DOC
! Documentation for NSOMOMax
! The maximum number of SOMOs for the current calculation.
! required for the calculation of prototype arrays.
END_DOC
NSOMOMax = min(elec_num, cfg_nsomo_max + 2)
NSOMOMin = max(0,cfg_nsomo_min-2)
! Note that here we need NSOMOMax + 2 sizes
NCSFMax = max(1,nint((binom(NSOMOMax,(NSOMOMax+1)/2)-binom(NSOMOMax,((NSOMOMax+1)/2)+1)))) ! TODO: NCSFs for MS=0
NBFMax = NCSFMax
maxDetDimPerBF = max(1,nint((binom(NSOMOMax,(NSOMOMax+1)/2))))
NMO = n_act_orb
integer i,j,k,l
integer startdet,enddet
integer ncfg,ncfgprev
integer NSOMO
integer dimcsfpercfg
integer detDimperBF
real*8 :: coeff
integer MS
integer ncfgpersomo
detDimperBF = 0
MS = elec_alpha_num-elec_beta_num
print *,"NSOMOMax=",NSOMOMax, cfg_seniority_index(NSOMOMin)
print *,"NSOMOMin=",NSOMOMin
do i=0,elec_num
print *,i," #cfgs=",cfg_seniority_index(i)
enddo
! number of cfgs = number of dets for 0 somos
n_CSF = cfg_seniority_index(NSOMOMin)-1
print *,"start=",n_CSF
ncfgprev = cfg_seniority_index(NSOMOMin)
!do i = 0-iand(MS,1)+2, NSOMOMax,2
do i = NSOMOMin+2, NSOMOMax,2
if(cfg_seniority_index(i) .EQ. -1)then
ncfgpersomo = N_configuration + 1
else
ncfgpersomo = cfg_seniority_index(i)
endif
ncfg = ncfgpersomo - ncfgprev
!detDimperBF = max(1,nint((binom(i,(i+1)/2))))
dimcsfpercfg = max(1,nint((binom(i-2,(i-2+1)/2)-binom(i-2,((i-2+1)/2)+1))))
n_CSF += ncfg * dimcsfpercfg
print *,i,">(",ncfg,ncfgprev,ncfgpersomo,")",",",detDimperBF,">",dimcsfpercfg, " | dimbas= ", n_CSF
!if(cfg_seniority_index(i+2) == -1) EXIT
!if(detDimperBF > maxDetDimPerBF) maxDetDimPerBF = detDimperBF
ncfgprev = cfg_seniority_index(i)
enddo
!if(NSOMOMax .EQ. elec_num)then
! ncfgpersomo = N_configuration + 1
! ncfg = ncfgpersomo - ncfgprev
! dimcsfpercfg = max(1,nint((binom(i-2,(i-2+1)/2)-binom(i-2,((i-2+1)/2)+1))))
! n_CSF += ncfg * dimcsfpercfg
! print *,i,">>(",ncfg,ncfgprev,ncfgpersomo,")",",",detDimperBF,">",dimcsfpercfg, " | dimbas= ", n_CSF
!endif
END_PROVIDER
subroutine get_phase_qp_to_cfg(Ialpha, Ibeta, phaseout)
use bitmasks
implicit none
BEGIN_DOC
! Documentation for get_phase_qp_to_cfg
!
! This function converts from (aaaa)(bbbb)
! notation to (ab)(ab)(ab)(ab)
! notation.
! The cfgCI code works in (ab)(ab)(ab)(ab)
! notation throughout.
END_DOC
integer(bit_kind),intent(in) :: Ialpha(N_int)
integer(bit_kind),intent(in) :: Ibeta(N_int)
real*8,intent(out) :: phaseout
integer(bit_kind) :: mask, deta(N_int), detb(N_int)
integer :: nbetas
integer :: count, k
! Initliaze deta and detb
deta = Ialpha
detb = Ibeta
! Find how many alpha electrons there are in all the N_ints
integer :: Na(N_int)
do k=1,N_int
Na(k) = popcnt(deta(k))
enddo
integer :: shift, ipos, nperm
phaseout = 1.d0
do k=1,N_int
do while(detb(k) /= 0_bit_kind)
! Find the lowest beta electron and clear it
IRP_IF WITHOUT_TRAILZ
ipos = popcnt(ieor(detb(k),detb(k)-1))-1
IRP_ELSE
ipos = trailz(detb(k))
IRP_ENDIF
detb(k) = ibclr(detb(k),ipos)
! Create a mask will all MOs higher than the beta electron
IRP_IF WITHOUT_SHIFTRL
mask = not(ishft(1_bit_kind,ipos + 1) - 1_bit_kind)
IRP_ELSE
mask = not(shiftl(1_bit_kind,ipos + 1) - 1_bit_kind)
IRP_ENDIF
! Apply the mask to the alpha string to count how many electrons to cross
nperm = popcnt( iand(mask, deta(k)) )
! Count how many alpha electrons are above the beta electron in the other integers
nperm = nperm + sum(Na(k+1:N_int))
if (iand(nperm,1) == 1) then
phaseout = -phaseout
endif
enddo
enddo
end subroutine get_phase_qp_to_cfg
BEGIN_PROVIDER [ real*8, DetToCSFTransformationMatrix, (0:NSOMOMax,NBFMax,maxDetDimPerBF)]
&BEGIN_PROVIDER [ real*8, psi_coef_config, (n_CSF,1)]
&BEGIN_PROVIDER [ integer, psi_config_data, (N_configuration,2)]
&BEGIN_PROVIDER [ integer, psi_csf_to_config_data, (n_CSF)]
use cfunctions
implicit none
BEGIN_DOC
! Documentation for DetToCSFTransformationMatrix
! Provides the matrix of transformatons for the
! conversion between determinant to CSF basis (in BFs)
END_DOC
integer*8 :: Isomo, Idomo
integer(bit_kind) :: Ialpha(N_int),Ibeta(N_int)
integer :: rows, cols, i, j, k
integer :: startdet, enddet
integer*8 MS
integer ndetI
integer :: getNSOMO
real*8,dimension(:,:),allocatable :: tempBuffer
real*8,dimension(:),allocatable :: tempCoeff
real*8 :: norm_det1, phasedet
integer :: nt
norm_det1 = 0.d0
MS = elec_alpha_num - elec_beta_num
print *,"Maxbfdim=",NBFMax
print *,"Maxdetdim=",maxDetDimPerBF
print *,"n_CSF=",n_CSF
print *,"N_configurations=",N_configuration
print *,"n_core_orb=",n_core_orb
! initialization
psi_coef_config = 0.d0
DetToCSFTransformationMatrix(0,:,:) = 1.d0
do i = 2-iand(elec_alpha_num-elec_beta_num,1), NSOMOMax,2
Isomo = IBSET(0_8, i) - 1_8
! rows = Ncsfs
! cols = Ndets
bfIcfg = max(1,nint((binom(i,(i+1)/2)-binom(i,((i+1)/2)+1))))
ndetI = max(1,nint((binom(i,(i+1)/2))))
allocate(tempBuffer(bfIcfg,ndetI))
call getCSFtoDETTransformationMatrix(Isomo, MS, NBFMax, maxDetDimPerBF, tempBuffer)
DetToCSFTransformationMatrix(i,:bfIcfg,:ndetI) = tempBuffer
deallocate(tempBuffer)
enddo
integer s, bfIcfg
integer countcsf
countcsf = 0
integer countdet
countdet = 0
integer istate
istate = 1
psi_csf_to_config_data(1) = 1
phasedet = 1.0d0
call omp_set_max_active_levels(1)
!$OMP PARALLEL
!$OMP MASTER
do i = 1,N_configuration
startdet = psi_configuration_to_psi_det(1,i)
enddet = psi_configuration_to_psi_det(2,i)
ndetI = enddet-startdet+1
allocate(tempCoeff(ndetI))
countdet = 1
do j = startdet, enddet
Ialpha = psi_det(:,1,psi_configuration_to_psi_det_data(j))
Ibeta = psi_det(:,2,psi_configuration_to_psi_det_data(j))
!call debug_spindet(Ialpha,1,1)
!call debug_spindet(Ibeta ,1,1)
call get_phase_qp_to_cfg(Ialpha, Ibeta, phasedet)
!print *,">>",Ialpha,Ibeta,phasedet
tempCoeff(countdet) = psi_coef(psi_configuration_to_psi_det_data(j), istate)*phasedet
!tempCoeff(countdet) = psi_coef(psi_configuration_to_psi_det_data(j), istate)
norm_det1 += tempCoeff(countdet)*tempCoeff(countdet)
countdet += 1
enddo
!print *,"dimcoef=",bfIcfg,norm_det1
!call printMatrix(tempCoeff,ndetI,1)
s = 0
do k=1,N_int
if (psi_configuration(k,1,i) == 0_bit_kind) cycle
s = s + popcnt(psi_configuration(k,1,i))
enddo
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
! perhaps blocking with CFGs of same seniority
! can be more efficient
allocate(tempBuffer(bfIcfg,ndetI))
tempBuffer = DetToCSFTransformationMatrix(s,:bfIcfg,:ndetI)
!print *,"csftodetdim=",bfIcfg,ndetI
!call printMatrix(tempBuffer,bfIcfg,ndetI)
call dgemm('N','N', bfIcfg, 1, ndetI, 1.d0, tempBuffer, size(tempBuffer,1), tempCoeff, size(tempCoeff,1), 0.d0, psi_coef_config(countcsf+1,1), size(psi_coef_config,1))
!call dgemv('N', NBFMax, maxDetDimPerBF, 1.d0, tempBuffer, size(tempBuffer,1), tempCoeff, 1, 0.d0, psi_coef_config(countcsf), 1)
!call printMatrix(psi_coef_config(countcsf+1,1),bfIcfg,1)
deallocate(tempCoeff)
deallocate(tempBuffer)
psi_config_data(i,1) = countcsf + 1
do k=1,bfIcfg
psi_csf_to_config_data(countcsf+k) = i
enddo
countcsf += bfIcfg
psi_config_data(i,2) = countcsf
enddo
print *,"Norm det=",norm_det1, size(psi_coef_config,1), " Dim csf=", countcsf
!$OMP END MASTER
!$OMP END PARALLEL
call omp_set_max_active_levels(4)
END_PROVIDER
BEGIN_PROVIDER [ integer, AIJpqMatrixDimsList, (NSOMOMin:NSOMOMax,4,NSOMOMax+1,NSOMOMax+1,2)]
&BEGIN_PROVIDER [ integer, rowsmax]
&BEGIN_PROVIDER [ integer, colsmax]
use cfunctions
implicit none
BEGIN_DOC
! Documentation for AIJpqMatrixList
! The prototype matrix containing the <I|E_{pq}|J>
! matrices for each I,J somo pair and orb ids.
END_DOC
integer i,j,k,l
integer*8 Isomo, Jsomo, tmpsomo
Isomo = 0
Jsomo = 0
integer rows, cols, nsomoi, nsomoj
rows = -1
cols = -1
integer*8 MS
MS = elec_alpha_num-elec_beta_num
nsomomin = elec_alpha_num-elec_beta_num
rowsmax = 0
colsmax = 0
print *,"NSOMOMax = ",NSOMOMax
print *,"NSOMOMin = ",NSOMOMin
!allocate(AIJpqMatrixDimsList(NSOMOMax,NSOMOMax,4,NSOMOMax,NSOMOMax,2))
! Type
! 1. SOMO -> SOMO
!print *,"Doing SOMO->SOMO"
AIJpqMatrixDimsList(NSOMOMin,1,1,1,1) = 1
AIJpqMatrixDimsList(NSOMOMin,1,1,1,2) = 1
do i = NSOMOMin, NSOMOMax, 2
Isomo = ISHFT(1_8,i)-1
do j = i-2,i-2, 2
Jsomo = ISHFT(1_8,j)-1
if(j .GT. NSOMOMax .OR. j .LT. 0) then
cycle
end if
do k = 1,i
do l = 1,i
! Define Jsomo
if(k.NE.l)then
Jsomo = IBCLR(Isomo, k-1)
Jsomo = IBCLR(Jsomo, l-1)
nsomoi = i
nsomoj = j
else
Isomo = ISHFT(1_8,i)-1
Jsomo = ISHFT(1_8,i)-1
nsomoi = i
nsomoj = i
endif
call getApqIJMatrixDims(Isomo, &
Jsomo, &
MS, &
rows, &
cols)
!print *, "SOMO->SOMO \t",i,j,k,l,">",Isomo,Jsomo,">",rows, cols
if(rowsmax .LT. rows) then
rowsmax = rows
end if
if(colsmax .LT. cols) then
colsmax = cols
end if
! i -> j
AIJpqMatrixDimsList(nsomoi,1,k,l,1) = rows
AIJpqMatrixDimsList(nsomoi,1,k,l,2) = cols
end do
end do
end do
end do
! Type
! 2. DOMO -> VMO
!print *,"Doing DOMO->VMO"
AIJpqMatrixDimsList(NSOMOMin,2,1,1,1) = 1
AIJpqMatrixDimsList(NSOMOMin,2,1,1,2) = 1
do i = NSOMOMin, NSOMOMax, 2
Isomo = ISHFT(1_8,i)-1
tmpsomo = ISHFT(1_8,i+2)-1
do j = i+2,i+2, 2
Jsomo = ISHFT(1_8,j)-1
if(j .GT. NSOMOMax .OR. j .LT. 0) then
cycle
end if
do k = 1,j
do l = 1,j
if(k .NE. l) then
Isomo = IBCLR(tmpsomo,k-1)
Isomo = IBCLR(Isomo,l-1)
! Define Jsomo
Jsomo = ISHFT(1_8,j)-1;
nsomoi = i
nsomoj = j
else
Isomo = ISHFT(1_8,j)-1
Isomo = IBCLR(Isomo,1-1)
Isomo = IBCLR(Isomo,j-1)
Jsomo = ISHFT(1_8,j)-1
Isomo = ISHFT(1_8,j)-1
nsomoi = j
nsomoj = j
endif
call getApqIJMatrixDims(Isomo, &
Jsomo, &
MS, &
rows, &
cols)
!print *, i,j,k,l,">",Isomo,Jsomo,">",rows, cols
if(rowsmax .LT. rows) then
rowsmax = rows
end if
if(colsmax .LT. cols) then
colsmax = cols
end if
! i -> j
AIJpqMatrixDimsList(nsomoi,2,k,l,1) = rows
AIJpqMatrixDimsList(nsomoi,2,k,l,2) = cols
end do
end do
end do
end do
! Type
! 3. SOMO -> VMO
!print *,"Doing SOMO->VMO"
AIJpqMatrixDimsList(NSOMOMin,3,1,1,1) = 1
AIJpqMatrixDimsList(NSOMOMin,3,1,1,2) = 1
do i = NSOMOMin, NSOMOMax, 2
Isomo = ISHFT(1_8,i)-1
do j = i,i, 2
Jsomo = ISHFT(1_8,j)-1
if(j .GT. NSOMOMax .OR. j .LE. 0) then
cycle
end if
do k = 1,i+1
do l = 1,i+1
if(k .NE. l) then
Isomo = ISHFT(1_8,i+1)-1
Isomo = IBCLR(Isomo,l-1)
Jsomo = ISHFT(1_8,j+1)-1
Jsomo = IBCLR(Jsomo,k-1)
else
Isomo = ISHFT(1_8,i)-1
Jsomo = ISHFT(1_8,j)-1
endif
call getApqIJMatrixDims(Isomo, &
Jsomo, &
MS, &
rows, &
cols)
!print *, i,j,k,l,">",Isomo,Jsomo,">",rows, cols
if(rowsmax .LT. rows) then
rowsmax = rows
end if
if(colsmax .LT. cols) then
colsmax = cols
end if
! i -> j
AIJpqMatrixDimsList(i,3,k,l,1) = rows
AIJpqMatrixDimsList(i,3,k,l,2) = cols
end do
end do
end do
end do
! Type
! 4. DOMO -> SOMO
!print *,"Doing DOMO->SOMO"
AIJpqMatrixDimsList(NSOMOMin,4,1,1,1) = 1
AIJpqMatrixDimsList(NSOMOMin,4,1,1,2) = 1
do i = NSOMOMin, NSOMOMax, 2
do j = i,i, 2
if(j .GT. NSOMOMax .OR. j .LE. 0) then
cycle
end if
do k = 1,i+1
do l = 1,i+1
if(k .NE. l) then
Isomo = ISHFT(1_8,i+1)-1
Isomo = IBCLR(Isomo,k-1)
Jsomo = ISHFT(1_8,j+1)-1
Jsomo = IBCLR(Jsomo,l-1)
else
Isomo = ISHFT(1_8,i)-1
Jsomo = ISHFT(1_8,j)-1
endif
call getApqIJMatrixDims(Isomo, &
Jsomo, &
MS, &
rows, &
cols)
!print *, i,j,k,l,">",Isomo,Jsomo,">",rows, cols
if(rowsmax .LT. rows) then
rowsmax = rows
end if
if(colsmax .LT. cols) then
colsmax = cols
end if
! i -> j
AIJpqMatrixDimsList(i,4,k,l,1) = rows
AIJpqMatrixDimsList(i,4,k,l,2) = cols
end do
end do
end do
end do
print *,"Rowsmax=",rowsmax," Colsmax=",colsmax
END_PROVIDER
BEGIN_PROVIDER [ real*8, AIJpqContainer, (NBFMax,NBFmax,NSOMOMax+1,NSOMOMax+1,4,NSOMOMin:NSOMOMax)]
use cfunctions
implicit none
BEGIN_DOC
! Documentation for AIJpqMatrixList
! The prototype matrix containing the <I|E_{pq}|J>
! matrices for each I,J somo pair and orb ids.
!
! Due to the different types of excitations which
! include DOMOs and VMOs two prototype DOMOs and two
! prototype VMOs are needed. Therefore
! the 4th and 5th dimensions are NSOMOMax+4 and NSOMOMax+4
! respectively.
!
! The type of excitations are ordered as follows:
! Type 1 - SOMO -> SOMO
! Type 2 - DOMO -> VMO
! Type 3 - SOMO -> VMO
! Type 4 - DOMO -> SOMO
END_DOC
integer i,j,k,l, orbp, orbq, ri, ci
orbp = 0
orbq = 0
integer*8 Isomo, Jsomo, tmpsomo
Isomo = 0
Jsomo = 0
integer rows, cols, nsomoi, nsomoj
rows = -1
cols = -1
integer*8 MS
MS = 0
real*8,dimension(:,:),allocatable :: meMatrix
integer maxdim
! Type
! 1. SOMO -> SOMO
AIJpqContainer = 0.d0
AIJpqContainer(1,1,1,1,1,NSOMOMin) = 1.0d0
integer :: rows_old, cols_old
rows_old = -1
cols_old = -1
allocate(meMatrix(1,1))
do i = NSOMOMin+2, NSOMOMax, 2
Isomo = ISHFT(1_8,i)-1
j=i-2
if(j .GT. NSOMOMax .OR. j .LT. 0) cycle
nsomoi = i
do k = 1,i
orbp = k
do l = 1,i
! Define Jsomo
if(k .NE. l) then
Jsomo = IBCLR(Isomo, k-1)
Jsomo = IBCLR(Jsomo, l-1)
nsomoj = j
else
Isomo = ISHFT(1_8,i)-1
Jsomo = ISHFT(1_8,i)-1
nsomoj = i
endif
call getApqIJMatrixDims(Isomo, &
Jsomo, &
MS, &
rows, &
cols)
orbq = l
if ((rows /= rows_old).or.(cols /= cols_old)) then
deallocate(meMatrix)
allocate(meMatrix(rows,cols))
rows_old = rows
cols_old = cols
endif
meMatrix = 0.0d0
! fill matrix
call getApqIJMatrixDriver(Isomo, &
Jsomo, &
orbp, &
orbq, &
MS, &
NMO, &
meMatrix, &
rows, &
cols)
! i -> j
do ri = 1,rows
do ci = 1,cols
AIJpqContainer(ri,ci,k,l,1,nsomoi) = meMatrix(ri, ci)
end do
end do
end do
end do
end do
deallocate(meMatrix)
! Type
! 2. DOMO -> VMO
!print *,"Doing DOMO -> VMO"
!AIJpqContainer(NSOMOMin,2,1,1,1,1) = 1.0d0
AIJpqContainer(1,1,1,1,2,NSOMOMin) = 1.0d0
do i = NSOMOMin, NSOMOMax, 2
Isomo = ISHFT(1_8,i)-1
tmpsomo = ISHFT(1_8,i+2)-1
do j = i+2,i+2, 2
if(j .GT. NSOMOMax .OR. j .LE. 0) cycle
Jsomo = ISHFT(1_8,j)-1
do k = 1,j
do l = 1,j
if(k .NE. l) then
Isomo = IBCLR(tmpsomo,k-1)
Isomo = IBCLR(Isomo,l-1)
! Define Jsomo
Jsomo = ISHFT(1_8,j)-1;
nsomoi = i
nsomoj = j
else
Isomo = ISHFT(1_8,j)-1
Isomo = IBCLR(Isomo,1-1)
Isomo = IBCLR(Isomo,j-1)
Jsomo = ISHFT(1_8,j)-1
Isomo = ISHFT(1_8,j)-1
nsomoi = j
nsomoj = j
endif
!print *,"k,l=",k,l
!call debug_spindet(Jsomo,1)
!call debug_spindet(Isomo,1)
!AIJpqContainer(nsomoi,2,k,l,:,:) = 0.0d0
AIJpqContainer(:,:,k,l,2,nsomoi) = 0.0d0
call getApqIJMatrixDims(Isomo, &
Jsomo, &
MS, &
rows, &
cols)
orbp = k
orbq = l
allocate(meMatrix(rows,cols))
meMatrix = 0.0d0
! fill matrix
call getApqIJMatrixDriver(Isomo, &
Jsomo, &
orbp, &
orbq, &
MS, &
NMO, &
meMatrix, &
rows, &
cols)
!print *, i,j,k,l,">",Isomo,Jsomo,">",rows, cols,">",rowsmax,colsmax
!call printMatrix(meMatrix,rows,cols)
! i -> j
do ri = 1,rows
do ci = 1,cols
!AIJpqContainer(nsomoi,2,k,l,ri,ci) = meMatrix(ri, ci)
AIJpqContainer(ri,ci,k,l,2,nsomoi) = meMatrix(ri, ci)
end do
end do
deallocate(meMatrix)
end do
end do
end do
end do
! Type
! 3. SOMO -> VMO
!print *,"Doing SOMO -> VMO"
!AIJpqContainer(NSOMOMin,3,1,1,1,1) = 1.0d0
AIJpqContainer(1,1,1,1,3,NSOMOMin) = 1.0d0
do i = NSOMOMin, NSOMOMax, 2
Isomo = ISHFT(1_8,i)-1
do j = i,i, 2
Jsomo = ISHFT(1_8,j)-1
if(j .GT. NSOMOMax .OR. j .LE. 0) cycle
do k = 1,i+1
do l = 1,i+1
if(k .NE. l) then
Isomo = ISHFT(1_8,i+1)-1
Isomo = IBCLR(Isomo,l-1)
Jsomo = ISHFT(1_8,j+1)-1
Jsomo = IBCLR(Jsomo,k-1)
else
Isomo = ISHFT(1_8,i)-1
Jsomo = ISHFT(1_8,j)-1
endif
!print *,"k,l=",k,l
!call debug_spindet(Jsomo,1)
!call debug_spindet(Isomo,1)
!AIJpqContainer(i,3,k,l,:,:) = 0.0d0
AIJpqContainer(:,:,k,l,3,i) = 0.0d0
call getApqIJMatrixDims(Isomo, &
Jsomo, &
MS, &
rows, &
cols)
orbp = k
orbq = l
allocate(meMatrix(rows,cols))
meMatrix = 0.0d0
! fill matrix
call getApqIJMatrixDriver(Isomo, &
Jsomo, &
orbp, &
orbq, &
MS, &
NMO, &
meMatrix, &
rows, &
cols)
!call printMatrix(meMatrix,rows,cols)
!print *, i,j,k,l,">",Isomo,Jsomo,">",rows, cols,">",rowsmax,colsmax
! i -> j
do ri = 1,rows
do ci = 1,cols
!AIJpqContainer(i,3,k,l,ri,ci) = meMatrix(ri, ci)
AIJpqContainer(ri,ci,k,l,3,i) = meMatrix(ri, ci)
end do
end do
deallocate(meMatrix)
end do
end do
end do
end do
! Type
! 4. DOMO -> SOMO
!print *,"Doing DOMO -> SOMO"
!AIJpqContainer(NSOMOMin,4,1,1,1,1) = 1.0d0
AIJpqContainer(1,1,1,1,4,NSOMOMin) = 1.0d0
do i = NSOMOMin+2, NSOMOMax, 2
Isomo = ISHFT(1_8,i)-1
do j = i,i, 2
Jsomo = ISHFT(1_8,i)-1
if(j .GT. NSOMOMax .OR. j .LE. 0) cycle
do k = 1,i+1
do l = 1,i+1
if(k .NE. l) then
Isomo = ISHFT(1_8,i+1)-1
Isomo = IBCLR(Isomo,k-1)
Jsomo = ISHFT(1_8,j+1)-1
Jsomo = IBCLR(Jsomo,l-1)
else
Isomo = ISHFT(1_8,i)-1
Jsomo = ISHFT(1_8,j)-1
endif
!AIJpqContainer(i,4,k,l,:,:) = 0.0d0
AIJpqContainer(:,:,k,l,4,i) = 0.0d0
call getApqIJMatrixDims(Isomo, &
Jsomo, &
MS, &
rows, &
cols)
orbp = k
orbq = l
allocate(meMatrix(rows,cols))
meMatrix = 0.0d0
! fill matrix
call getApqIJMatrixDriver(Isomo, &
Jsomo, &
orbp, &
orbq, &
MS, &
NMO, &
meMatrix, &
rows, &
cols)
!call printMatrix(meMatrix,rows,cols)
!print *, i,j,k,l,">",Isomo,Jsomo,">",rows, cols,">",rowsmax,colsmax
! i -> j
do ri = 1,rows
do ci = 1,cols
!AIJpqContainer(i,4,k,l,ri,ci) = meMatrix(ri, ci)
AIJpqContainer(ri,ci,k,l,4,i) = meMatrix(ri, ci)
end do
end do
deallocate(meMatrix)
end do
end do
end do
end do
END_PROVIDER
subroutine calculate_preconditioner_cfg(diag_energies)
implicit none
use bitmasks
BEGIN_DOC
! Documentation for calculate_preconditioner
!
! Calculates the diagonal energies of
! the configurations in psi_configuration
! returns : diag_energies :
END_DOC
integer :: i,j,k,l,p,q,noccp,noccq, ii, jj
real*8,intent(out) :: diag_energies(n_CSF)
integer :: nholes
integer :: nvmos
integer :: listvmos(mo_num)
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
integer :: listholes(mo_num)
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
integer*8 :: Idomo
integer*8 :: Isomo
integer*8 :: Jdomo
integer*8 :: Jsomo
integer*8 :: diffSOMO
integer*8 :: diffDOMO
integer :: NSOMOI
integer :: NSOMOJ
integer :: ndiffSOMO
integer :: ndiffDOMO
integer :: starti, endi, cnti, cntj, rows,cols
integer :: extype,pmodel,qmodel
integer(bit_kind) :: Icfg(N_INT,2)
integer(bit_kind) :: Jcfg(N_INT,2)
integer,external :: getNSOMO
real*8, external :: mo_two_e_integral
real*8 :: hpp
real*8 :: meCC
real*8 :: ecore
PROVIDE h_core_ri
! initialize energies
diag_energies = 0.d0
! calculate core energy
!call get_core_energy(ecore)
!diag_energies = ecore
! calculate the core energy
!print *,"Core energy=",ref_bitmask_energy
do i=1,N_configuration
Isomo = psi_configuration(1,1,i)
Idomo = psi_configuration(1,2,i)
Icfg(1,1) = psi_configuration(1,1,i)
Icfg(1,2) = psi_configuration(1,2,i)
NSOMOI = getNSOMO(psi_configuration(:,:,i))
starti = psi_config_data(i,1)
endi = psi_config_data(i,2)
! find out all pq holes possible
nholes = 0
! holes in SOMO
!do k = n_core_orb+1,n_core_orb + n_act_orb
do k = 1,mo_num
if(POPCNT(IAND(Isomo,IBSET(0_8,k-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = k
holetype(nholes) = 1
endif
enddo
! holes in DOMO
!do k = n_core_orb+1,n_core_orb + n_act_orb
!do k = 1+n_core_inact_orb,n_core_orb+n_core_inact_act_orb
do k = 1,mo_num
if(POPCNT(IAND(Idomo,IBSET(0_8,k-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = k
holetype(nholes) = 2
endif
enddo
! find vmos
listvmos = -1
vmotype = -1
nvmos = 0
!do k = n_core_orb+1,n_core_orb + n_act_orb
do k = 1,mo_num
!print *,i,IBSET(0,i-1),POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))), POPCNT(IAND(Idomo,(IBSET(0_8,i-1))))
if(POPCNT(IAND(Isomo,(IBSET(0_8,k-1)))) .EQ. 0 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,k-1)))) .EQ. 0) then
nvmos += 1
listvmos(nvmos) = k
vmotype(nvmos) = 0
else if(POPCNT(IAND(Isomo,(IBSET(0_8,k-1)))) .EQ. 1 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,k-1)))) .EQ. 0 ) then
nvmos += 1
listvmos(nvmos) = k
vmotype(nvmos) = 1
end if
enddo
!print *,"I=",i
!call debug_spindet(psi_configuration(1,1,i),N_int)
!call debug_spindet(psi_configuration(1,2,i),N_int)
do k=1,nholes
p = listholes(k)
noccp = holetype(k)
! Calculate one-electron
! and two-electron coulomb terms
do l=1,nholes
q = listholes(l)
noccq = holetype(l)
!print *,"--------------- K=",p," L=",q
! one-electron term
if(p.EQ.q) then
hpp = noccq * h_core_ri(p,q)!mo_one_e_integrals(q,q)
else
hpp = 0.d0
endif
do j=starti,endi
! coulomb term
! (pp,qq) = <pq|pq>
if(p.EQ.q) then
diag_energies(j) += hpp !+ 0.5d0 * (noccp * noccq * mo_two_e_integral(p,q,p,q))
!print *,"hpp=",hpp,"diga= ",diag_energies(j)
! else
! diag_energies(j) += ! 0.5d0 * noccp * noccq * mo_two_e_integral(p,q,p,q)
! print *,"diga= ",diag_energies(j)
endif
enddo
enddo
enddo
enddo
end subroutine calculate_preconditioner_cfg
subroutine obtain_connected_I_foralpha_fromfilterdlist(idxI, nconnectedJ, idslistconnectedJ, listconnectedJ, Ialpha, connectedI, idxs_connectedI, nconnectedI, excitationIds, excitationTypes, diagfactors)
implicit none
use bitmasks
BEGIN_DOC
! Documentation for obtain_connected_I_foralpha
! This function returns all those selected configurations
! which are connected to the input configuration
! Ialpha by a single excitation.
!
! The type of excitations are ordered as follows:
! Type 1 - SOMO -> SOMO
! Type 2 - DOMO -> VMO
! Type 3 - SOMO -> VMO
! Type 4 - DOMO -> SOMO
!
! Order of operators
! \alpha> = a^\dag_p a_q |I> = E_pq |I>
END_DOC
integer ,intent(in) :: idxI
integer ,intent(in) :: nconnectedJ
integer(bit_kind),intent(in) :: listconnectedJ(N_int,2,*)
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
integer(bit_kind),intent(out) :: connectedI(N_int,2,*)
integer ,intent(in) :: idslistconnectedJ(*)
integer ,intent(out) :: idxs_connectedI(*)
integer,intent(out) :: nconnectedI
integer,intent(out) :: excitationIds(2,*)
integer,intent(out) :: excitationTypes(*)
real*8 ,intent(out) :: diagfactors(*)
integer*8 :: Idomo
integer*8 :: Isomo
integer*8 :: Jdomo
integer*8 :: Jsomo
integer*8 :: IJsomo
integer*8 :: diffSOMO
integer*8 :: diffDOMO
integer*8 :: xordiffSOMODOMO
integer :: ndiffSOMO
integer :: ndiffDOMO
integer :: nxordiffSOMODOMO
integer :: ii,i,j,k,kk,l,p,q,nsomoJ,nsomoalpha,starti,endi,extyp,nholes, idxJ
integer :: listholes(mo_num)
integer :: holetype(mo_num)
integer :: end_index
integer :: Nsomo_alpha
logical :: isOKlistJ
PROVIDE DetToCSFTransformationMatrix
isOKlistJ = .False.
nconnectedI = 0
end_index = N_configuration
! Since CFGs are sorted wrt to seniority
! we don't have to search the full CFG list
Isomo = Ialpha(1,1)
Idomo = Ialpha(1,2)
Nsomo_alpha = POPCNT(Isomo)
end_index = min(N_configuration,cfg_seniority_index(min(Nsomo_alpha+4,elec_num))-1)
if(end_index .LT. 0) end_index= N_configuration
!end_index = N_configuration
p = 0
q = 0
do i=1,nconnectedJ
idxJ = idslistconnectedJ(i)
Isomo = Ialpha(1,1)
Idomo = Ialpha(1,2)
Jsomo = listconnectedJ(1,1,i)
Jdomo = listconnectedJ(1,2,i)
diffSOMO = IEOR(Isomo,Jsomo)
ndiffSOMO = POPCNT(diffSOMO)
diffDOMO = IEOR(Idomo,Jdomo)
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
select case(ndiffDOMO)
case (0)
! SOMO -> VMO
!print *,"obt SOMO -> VMO"
extyp = 3
IJsomo = IEOR(Isomo, Jsomo)
IRP_IF WITHOUT_TRAILZ
p = (popcnt(ieor( IAND(Isomo,IJsomo), IAND(Isomo,IJsomo)-1)) -1) + 1
IRP_ELSE
p = TRAILZ(IAND(Isomo,IJsomo)) + 1
IRP_ENDIF
IJsomo = IBCLR(IJsomo,p-1)
IRP_IF WITHOUT_TRAILZ
q = (popcnt(ieor(IJsomo,IJsomo-1))-1) + 1
IRP_ELSE
q = TRAILZ(IJsomo) + 1
IRP_ENDIF
case (1)
! DOMO -> VMO
! or
! SOMO -> SOMO
nsomoJ = POPCNT(Jsomo)
nsomoalpha = POPCNT(Isomo)
if(nsomoJ .GT. nsomoalpha) then
! DOMO -> VMO
!print *,"obt DOMO -> VMO"
extyp = 2
IRP_IF WITHOUT_TRAILZ
p = (popcnt(ieor( IEOR(Idomo,Jdomo), IEOR(Idomo,Jdomo)-1))-1) + 1
IRP_ELSE
p = TRAILZ(IEOR(Idomo,Jdomo)) + 1
IRP_ENDIF
Isomo = IEOR(Isomo, Jsomo)
Isomo = IBCLR(Isomo,p-1)
IRP_IF WITHOUT_TRAILZ
q = (popcnt(ieor(Isomo,Isomo-1))-1) + 1
IRP_ELSE
q = TRAILZ(Isomo) + 1
IRP_ENDIF
else
! SOMO -> SOMO
!print *,"obt SOMO -> SOMO"
extyp = 1
IRP_IF WITHOUT_TRAILZ
q = (popcnt(ieor( IEOR(Idomo,Jdomo), IEOR(Idomo,Jdomo)-1))-1) + 1
IRP_ELSE
q = TRAILZ(IEOR(Idomo,Jdomo)) + 1
IRP_ENDIF
Isomo = IEOR(Isomo, Jsomo)
Isomo = IBCLR(Isomo,q-1)
IRP_IF WITHOUT_TRAILZ
p = (popcnt(ieor(Isomo,Isomo-1))-1) + 1
IRP_ELSE
p = TRAILZ(Isomo) + 1
IRP_ENDIF
end if
case (2)
! DOMO -> SOMO
!print *,"obt DOMO -> SOMO"
extyp = 4
IJsomo = IEOR(Isomo, Jsomo)
IRP_IF WITHOUT_TRAILZ
p = (popcnt(ieor(IAND(Jsomo,IJsomo) ,IAND(Jsomo,IJsomo) -1))-1) + 1
IRP_ELSE
p = TRAILZ(IAND(Jsomo,IJsomo)) + 1
IRP_ENDIF
IJsomo = IBCLR(IJsomo,p-1)
IRP_IF WITHOUT_TRAILZ
q = (popcnt(ieor(IJsomo,IJsomo-1))-1) + 1
IRP_ELSE
q = TRAILZ(IJsomo) + 1
IRP_ENDIF
case default
print *,"something went wront in get connectedI"
end select
starti = psi_config_data(idxJ,1)
endi = psi_config_data(idxJ,2)
nconnectedI += 1
connectedI(:,:,nconnectedI) = listconnectedJ(:,:,i)
idxs_connectedI(nconnectedI)=starti
excitationIds(1,nconnectedI)=p
excitationIds(2,nconnectedI)=q
excitationTypes(nconnectedI) = extyp
diagfactors(nconnectedI) = 1.0d0
else if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
! find out all pq holes possible
nholes = 0
! holes in SOMO
Isomo = listconnectedJ(1,1,i)
Idomo = listconnectedJ(1,2,i)
do ii = 1,mo_num
if(POPCNT(IAND(Isomo,IBSET(0_8,ii-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = ii
holetype(nholes) = 1
endif
end do
! holes in DOMO
do ii = 1,mo_num
if(POPCNT(IAND(Idomo,IBSET(0_8,ii-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = ii
holetype(nholes) = 2
endif
end do
do k=1,nholes
p = listholes(k)
q = p
extyp = 1
if(holetype(k) .EQ. 1) then
starti = psi_config_data(idxJ,1)
endi = psi_config_data(idxJ,2)
nconnectedI += 1
connectedI(:,:,nconnectedI) = listconnectedJ(:,:,i)
idxs_connectedI(nconnectedI)=starti
excitationIds(1,nconnectedI)=p
excitationIds(2,nconnectedI)=q
excitationTypes(nconnectedI) = extyp
diagfactors(nconnectedI) = 1.0d0
else
starti = psi_config_data(idxJ,1)
endi = psi_config_data(idxJ,2)
nconnectedI += 1
connectedI(:,:,nconnectedI) = listconnectedJ(:,:,i)
idxs_connectedI(nconnectedI)=starti
excitationIds(1,nconnectedI)=p
excitationIds(2,nconnectedI)=q
excitationTypes(nconnectedI) = extyp
diagfactors(nconnectedI) = 2.0d0
endif
enddo
endif
end do
end subroutine obtain_connected_I_foralpha_fromfilterdlist
subroutine convertOrbIdsToModelSpaceIds(Ialpha, Jcfg, p, q, extype, pmodel, qmodel)
implicit none
BEGIN_DOC
! This function converts the orbital ids
! in real space to those used in model space
! in order to identify the matrices required
! for the calculation of MEs.
!
! The type of excitations are ordered as follows:
! Type 1 - SOMO -> SOMO
! Type 2 - DOMO -> VMO
! Type 3 - SOMO -> VMO
! Type 4 - DOMO -> SOMO
END_DOC
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
integer(bit_kind),intent(in) :: Jcfg(N_int,2)
integer,intent(in) :: p,q
integer,intent(in) :: extype
integer,intent(out) :: pmodel,qmodel
!integer(bit_kind) :: Isomo(N_int)
!integer(bit_kind) :: Idomo(N_int)
!integer(bit_kind) :: Jsomo(N_int)
!integer(bit_kind) :: Jdomo(N_int)
integer*8 :: Isomo
integer*8 :: Idomo
integer*8 :: Jsomo
integer*8 :: Jdomo
integer*8 :: mask
integer :: iint, ipos
!integer(bit_kind) :: Isomotmp(N_int)
!integer(bit_kind) :: Jsomotmp(N_int)
integer*8 :: Isomotmp
integer*8 :: Jsomotmp
integer :: pos0,pos0prev
! TODO Flag (print) when model space indices is > 64
Isomo = Ialpha(1,1)
Idomo = Ialpha(1,2)
Jsomo = Jcfg(1,1)
Jdomo = Jcfg(1,2)
pos0prev = 0
pmodel = p
qmodel = q
if(p .EQ. q) then
pmodel = 1
qmodel = 1
else
select case(extype)
case (1)
! SOMO -> SOMO
! remove all domos
!print *,"type -> SOMO -> SOMO"
mask = ISHFT(1_8,p) - 1
Isomotmp = IAND(Isomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
mask = ISHFT(1_8,q) - 1
Isomotmp = IAND(Isomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
case (2)
! DOMO -> VMO
! remove all domos except one at p
!print *,"type -> DOMO -> VMO"
mask = ISHFT(1_8,p) - 1
Jsomotmp = IAND(Jsomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
mask = ISHFT(1_8,q) - 1
Jsomotmp = IAND(Jsomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
case (3)
! SOMO -> VMO
!print *,"type -> SOMO -> VMO"
!Isomo = IEOR(Isomo,Jsomo)
if(p.LT.q) then
mask = ISHFT(1_8,p) - 1
Isomo = IAND(Isomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
mask = ISHFT(1_8,q) - 1
Jsomo = IAND(Jsomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask)) + 1
else
mask = ISHFT(1_8,p) - 1
Isomo = IAND(Isomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask)) + 1
mask = ISHFT(1_8,q) - 1
Jsomo = IAND(Jsomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
endif
case (4)
! DOMO -> SOMO
! remove all domos except one at p
!print *,"type -> DOMO -> SOMO"
!Isomo = IEOR(Isomo,Jsomo)
if(p.LT.q) then
mask = ISHFT(1_8,p) - 1
Jsomo = IAND(Jsomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
mask = ISHFT(1_8,q) - 1
Isomo = IAND(Isomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask)) + 1
else
mask = ISHFT(1_8,p) - 1
Jsomo = IAND(Jsomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask)) + 1
mask = ISHFT(1_8,q) - 1
Isomo = IAND(Isomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
endif
case default
print *,"something is wrong in convertOrbIdsToModelSpaceIds"
end select
endif
!print *,p,q,"model ids=",pmodel,qmodel
end subroutine convertOrbIdsToModelSpaceIds
subroutine calculate_sigma_vector_cfg_nst_naive_store(psi_out, psi_in, n_st, sze, istart, iend, ishift, istep)
implicit none
use bitmasks
use omp_lib
BEGIN_DOC
! Documentation for sigma-vector calculation
!
! Calculates the result of the
! application of the hamiltonian to the
! wavefunction in CFG basis once
! TODO : Things prepare outside this routine
! 1. Touch the providers for
! a. ApqIJ containers
! b. DET to CSF transformation matrices
! 2. DET to CSF transcormation
! 2. CSF to DET back transcormation
! returns : psi_coef_out_det :
END_DOC
integer,intent(in) :: sze, istart,iend, istep, ishift, n_st
real*8,intent(in) :: psi_in(n_st,sze)
real*8,intent(out) :: psi_out(n_st,sze)
integer(bit_kind) :: Icfg(N_INT,2)
integer :: i,j,k,l,p,q,noccp,noccq, ii, jj, m, n, idxI, kk, nocck,orbk
integer(bit_kind),dimension(:,:,:),allocatable :: listconnectedJ
integer(bit_kind),dimension(:,:,:),allocatable :: alphas_Icfg
integer(bit_kind),dimension(:,:,:),allocatable :: singlesI
integer(bit_kind),dimension(:,:,:),allocatable :: connectedI_alpha
integer,dimension(:),allocatable :: idxs_singlesI
integer,dimension(:),allocatable :: idxs_connectedI_alpha
integer,dimension(:,:),allocatable :: excitationIds_single
integer,dimension(:),allocatable :: excitationTypes_single
integer,dimension(:,:),allocatable :: excitationIds
integer,dimension(:),allocatable :: excitationTypes
integer,dimension(:),allocatable :: idslistconnectedJ
real*8,dimension(:),allocatable :: diagfactors
integer :: nholes
integer :: nvmos
integer :: listvmos(mo_num)
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
integer :: listholes(mo_num)
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
integer :: Nalphas_Icfg, nconnectedI, rowsikpq, colsikpq, nsinglesI
integer :: extype,NSOMOalpha,NSOMOI,NSOMOJ,pmodel,qmodel
integer :: getNSOMO
integer :: totcolsTKI
integer :: rowsTKI
integer :: noccpp
integer :: istart_cfg, iend_cfg, num_threads_max
integer :: nconnectedJ,nconnectedtotalmax,nconnectedmaxJ,maxnalphas,ntotJ
integer*8 :: MS, Isomo, Idomo, Jsomo, Jdomo, Ialpha, Ibeta
integer :: moi, moj, mok, mol, starti, endi, startj, endj, cnti, cntj, cntk
real*8 :: norm_coef_cfg, fac2eints
real*8 :: norm_coef_det
real*8 :: meCC1, meCC2, diagfac
real*8,dimension(:,:,:),allocatable :: TKI
real*8,dimension(:,:),allocatable :: GIJpqrs
real*8,dimension(:,:,:),allocatable :: TKIGIJ
real*8,dimension(:),allocatable :: psi_out_tmp
real*8,dimension(:,:),allocatable :: CCmattmp
real*8, external :: mo_two_e_integral
real*8, external :: get_two_e_integral
real*8,dimension(:),allocatable:: diag_energies
real*8 :: tmpvar, tmptot
integer(omp_lock_kind), allocatable :: lock(:)
call omp_set_max_active_levels(1)
allocate(lock(sze))
do i=1,sze
call omp_init_lock(lock(i))
enddo
!print *," sze = ",sze
allocate(diag_energies(n_CSF))
call calculate_preconditioner_cfg(diag_energies)
MS = 0
norm_coef_cfg=0.d0
psi_out=0.d0
istart_cfg = psi_csf_to_config_data(istart)
iend_cfg = psi_csf_to_config_data(iend)
!nconnectedtotalmax = 1000
!nconnectedmaxJ = 1000
maxnalphas = elec_num*mo_num
Icfg(1,1) = psi_configuration(1,1,1)
Icfg(1,2) = psi_configuration(1,2,1)
allocate(listconnectedJ(N_INT,2,max(sze,100)))
allocate(idslistconnectedJ(max(sze,100)))
call obtain_connected_J_givenI(1, Icfg, listconnectedJ, idslistconnectedJ, nconnectedmaxJ, nconnectedtotalmax)
deallocate(listconnectedJ)
deallocate(idslistconnectedJ)
integer*8, allocatable :: bit_tmp(:)
integer*8, external :: configuration_search_key
double precision :: diagfactors_0
allocate( bit_tmp(0:N_configuration+1))
do j=1,N_configuration
bit_tmp(j) = configuration_search_key(psi_configuration(1,1,j),N_int)
enddo
call omp_set_max_active_levels(1)
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP private(i,icfg, isomo, idomo, NSOMOI, NSOMOJ, nholes, k, listholes,&
!$OMP holetype, vmotype, nvmos, listvmos, starti, endi, &
!$OMP nsinglesI, singlesI,idxs_singlesI,excitationIds_single,&
!$OMP excitationTypes_single, idxI, p, q, extype, pmodel, qmodel,&
!$OMP Jsomo, Jdomo, startj, endj, kk, jj, ii, cnti, cntj, meCC1,&
!$OMP nconnectedJ,listconnectedJ,idslistconnectedJ,ntotJ, &
!$OMP Nalphas_Icfg,alphas_Icfg,connectedI_alpha, &
!$OMP idxs_connectedI_alpha,nconnectedI,excitationIds,excitationTypes,diagfactors,&
!$OMP totcolsTKI,rowsTKI,NSOMOalpha,rowsikpq, &
!$OMP colsikpq, GIJpqrs,TKIGIJ,j,l,m,TKI,CCmattmp, moi, moj, mok, mol,&
!$OMP diagfac, tmpvar, diagfactors_0) &
!$OMP shared(istart_cfg, iend_cfg, psi_configuration, mo_num, psi_config_data,&
!$OMP N_int, N_st, psi_out, psi_in, h_core_ri, AIJpqContainer,&
!$OMP sze, NalphaIcfg_list,alphasIcfg_list, bit_tmp, &
!$OMP AIJpqMatrixDimsList, diag_energies, n_CSF, lock, NBFmax,nconnectedtotalmax, nconnectedmaxJ,maxnalphas,&
!$OMP num_threads_max)
allocate(singlesI(N_INT,2,max(sze,100)))
allocate(idxs_singlesI(max(sze,100)))
allocate(excitationIds_single(2,max(sze,100)))
allocate(excitationTypes_single(max(sze,100)))
!
!!! Single Excitations !!!
!$OMP DO SCHEDULE(dynamic,16)
do i=istart_cfg,iend_cfg
! if Seniority_range > 8 then
! continue
! else
! cycle
Icfg(1,1) = psi_configuration(1,1,i)
Icfg(1,2) = psi_configuration(1,2,i)
Isomo = Icfg(1,1)
Idomo = Icfg(1,2)
NSOMOI = getNSOMO(Icfg)
! find out all pq holes possible
nholes = 0
! holes in SOMO
! list_act
! list_core
! list_core_inact
! bitmasks
!do k = n_core_orb+1,n_core_orb + n_act_orb
do k = 1,mo_num
if(POPCNT(IAND(Isomo,IBSET(0_8,k-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = k
holetype(nholes) = 1
endif
enddo
! holes in DOMO
!do k = n_core_orb+1,n_core_orb + n_act_orb
do k = 1,mo_num
if(POPCNT(IAND(Idomo,IBSET(0_8,k-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = k
holetype(nholes) = 2
endif
enddo
! find vmos
listvmos = -1
vmotype = -1
nvmos = 0
!do k = n_core_orb+1,n_core_orb + n_act_orb
do k = 1,mo_num
!print *,i,IBSET(0,i-1),POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))), POPCNT(IAND(Idomo,(IBSET(0_8,i-1))))
if(POPCNT(IAND(Isomo,(IBSET(0_8,k-1)))) .EQ. 0 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,k-1)))) .EQ. 0) then
nvmos += 1
listvmos(nvmos) = k
vmotype(nvmos) = 0
else if(POPCNT(IAND(Isomo,(IBSET(0_8,k-1)))) .EQ. 1 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,k-1)))) .EQ. 0 ) then
nvmos += 1
listvmos(nvmos) = k
vmotype(nvmos) = 1
end if
enddo
! Icsf ids
starti = psi_config_data(i,1)
endi = psi_config_data(i,2)
NSOMOI = getNSOMO(Icfg)
call generate_all_singles_cfg_with_type(bit_tmp,Icfg,singlesI,idxs_singlesI,excitationIds_single,&
excitationTypes_single,nsinglesI,N_int)
do j = 1,nsinglesI
idxI = idxs_singlesI(j)
NSOMOJ = getNSOMO(singlesI(1,1,j))
p = excitationIds_single(1,j)
q = excitationIds_single(2,j)
extype = excitationTypes_single(j)
! Off diagonal terms
call convertOrbIdsToModelSpaceIds(Icfg, singlesI(1,1,j), p, q, extype, pmodel, qmodel)
Jsomo = singlesI(1,1,j)
Jdomo = singlesI(1,2,j)
! Add the hole on J
if(POPCNT(IAND(Jsomo,IBSET(0_8,q-1))) .EQ. 1 .AND. POPCNT(IAND(Isomo,IBSET(0_8,q-1))) .EQ. 0) then
nholes += 1
listholes(nholes) = q
holetype(nholes) = 1
endif
if((POPCNT(IAND(Jdomo,IBSET(0_8,q-1))) .EQ. 1 .AND. POPCNT(IAND(Idomo,IBSET(0_8,q-1))) .EQ. 0) .AND. POPCNT(IAND(Isomo,IBSET(0_8,q-1))) .EQ. 0) then
nholes += 1
listholes(nholes) = q
holetype(nholes) = 2
endif
startj = psi_config_data(idxI,1)
endj = psi_config_data(idxI,2)
!!! One-electron contribution !!!
do ii = starti, endi
cnti = ii-starti+1
do jj = startj, endj
cntj = jj-startj+1
meCC1 = AIJpqContainer(cnti,cntj,pmodel,qmodel,extype,NSOMOI)* h_core_ri(p,q)
call omp_set_lock(lock(jj))
do kk = 1,n_st
psi_out(kk,jj) = psi_out(kk,jj) + meCC1 * psi_in(kk,ii)
enddo
call omp_unset_lock(lock(jj))
enddo
enddo
! Undo setting in listholes
if(POPCNT(IAND(Jsomo,IBSET(0_8,q-1))) .EQ. 1 .AND. POPCNT(IAND(Isomo,IBSET(0_8,q-1))) .EQ. 0) then
nholes -= 1
endif
if((POPCNT(IAND(Jdomo,IBSET(0_8,q-1))) .EQ. 1 .AND. POPCNT(IAND(Idomo,IBSET(0_8,q-1))) .EQ. 0) .AND. POPCNT(IAND(Isomo,IBSET(0_8,q-1))) .EQ. 0) then
nholes -= 1
endif
enddo
enddo
!$OMP END DO
deallocate(singlesI)
deallocate(idxs_singlesI)
deallocate(excitationIds_single)
deallocate(excitationTypes_single)
allocate(listconnectedJ(N_INT,2,max(sze,100)))
allocate(alphas_Icfg(N_INT,2,max(sze,100)))
allocate(connectedI_alpha(N_INT,2,max(sze,100)))
allocate(idxs_connectedI_alpha(max(sze,100)))
allocate(excitationIds(2,max(sze,100)))
allocate(excitationTypes(max(sze,100)))
allocate(diagfactors(max(sze,100)))
allocate(idslistconnectedJ(max(sze,100)))
allocate(CCmattmp(n_st,NBFmax))
! Loop over all selected configurations
!$OMP DO SCHEDULE(dynamic,16)
do i = istart_cfg,iend_cfg
! TKI = 0.d0
! GIJpqrs = 0.d0
! TKIGIJ = 0.d0
! if Seniority_range > 8 then
! continue
! else
! cycle
Icfg(1,1) = psi_configuration(1,1,i)
Icfg(1,2) = psi_configuration(1,2,i)
starti = psi_config_data(i,1)
endi = psi_config_data(i,2)
! Returns all unique (checking the past) singly excited cfgs connected to I
Nalphas_Icfg = 0
! TODO:
! test if size(alphas_Icfg,1) < Nmo**2) then deallocate + allocate
Nalphas_Icfg = NalphaIcfg_list(i)
alphas_Icfg(1:n_int,1:2,1:Nalphas_Icfg) = alphasIcfg_list(1:n_int,1:2,i,1:Nalphas_Icfg)
if(Nalphas_Icfg .GT. maxnalphas) then
print *,"Nalpha > maxnalpha"
endif
call obtain_connected_J_givenI(i, Icfg, listconnectedJ, idslistconnectedJ, nconnectedJ, ntotJ)
! TODO : remove doubly excited for return
! Here we do 2x the loop. One to count for the size of the matrix, then we compute.
do k = 1,Nalphas_Icfg
! Now generate all singly excited with respect to a given alpha CFG
call obtain_connected_I_foralpha_fromfilterdlist(i,nconnectedJ, idslistconnectedJ, &
listconnectedJ, alphas_Icfg(1,1,k),connectedI_alpha,idxs_connectedI_alpha,nconnectedI, &
excitationIds,excitationTypes,diagfactors)
if(nconnectedI .EQ. 0) then
cycle
endif
totcolsTKI = 0
rowsTKI = -1
NSOMOalpha = getNSOMO(alphas_Icfg(:,:,k))
do j = 1,nconnectedI
NSOMOI = getNSOMO(connectedI_alpha(:,:,j))
p = excitationIds(1,j)
q = excitationIds(2,j)
extype = excitationTypes(j)
call convertOrbIdsToModelSpaceIds(alphas_Icfg(1,1,k), connectedI_alpha(1,1,j), p, q, extype, pmodel, qmodel)
! for E_pp E_rs and E_ppE_rr case
rowsikpq = AIJpqMatrixDimsList(NSOMOalpha,extype,pmodel,qmodel,1)
colsikpq = AIJpqMatrixDimsList(NSOMOalpha,extype,pmodel,qmodel,2)
totcolsTKI += colsikpq
rowsTKI = rowsikpq
enddo
allocate(TKI(n_st,rowsTKI,totcolsTKI)) ! coefficients of CSF
! Initialize the integral container
! dims : (totcolsTKI, nconnectedI)
allocate(GIJpqrs(totcolsTKI,nconnectedI)) ! gpqrs
allocate(TKIGIJ(n_st,rowsTKI,nconnectedI)) ! TKI * gpqrs
!print *,"\t---rowsTKI=",rowsTKI," totCols=",totcolsTKI
totcolsTKI = 0
do j = 1,nconnectedI
NSOMOI = getNSOMO(connectedI_alpha(:,:,j))
p = excitationIds(1,j)
q = excitationIds(2,j)
extype = excitationTypes(j)
call convertOrbIdsToModelSpaceIds(alphas_Icfg(:,:,k), connectedI_alpha(:,:,j), p, q, extype, pmodel, qmodel)
rowsikpq = AIJpqMatrixDimsList(NSOMOalpha,extype,pmodel,qmodel,1)
colsikpq = AIJpqMatrixDimsList(NSOMOalpha,extype,pmodel,qmodel,2)
rowsTKI = rowsikpq
do m = 1,colsikpq
do l = 1,rowsTKI
do kk = 1,n_st
TKI(kk,l,totcolsTKI+m) = AIJpqContainer(l,m,pmodel,qmodel,extype,NSOMOalpha) &
* psi_in(kk,idxs_connectedI_alpha(j)+m-1)
enddo
enddo
enddo
diagfactors_0 = diagfactors(j)*0.5d0
moi = excitationIds(1,j) ! p
mok = excitationIds(2,j) ! q
do l=1,nconnectedI
moj = excitationIds(2,l) ! s
mol = excitationIds(1,l) ! r
diagfac = diagfactors_0 * diagfactors(l)* mo_two_e_integral(mok,mol,moi,moj)! g(pq,sr) = <ps,qr>
do m = 1,colsikpq
! <ij|kl> = (ik|jl)
GIJpqrs(totcolsTKI+m,l) = diagfac
enddo
enddo
totcolsTKI += colsikpq
enddo
! Do big BLAS
call dgemm('N','N', rowsTKI*n_st, nconnectedI, totcolsTKI, 1.d0, &
TKI, size(TKI,1)*size(TKI,2), GIJpqrs, size(GIJpqrs,1), 0.d0, &
TKIGIJ , size(TKIGIJ,1)*size(TKIGIJ,2) )
! Collect the result
totcolsTKI = 0
do j = 1,nconnectedI
NSOMOI = getNSOMO(connectedI_alpha(1,1,j))
p = excitationIds(1,j)
q = excitationIds(2,j)
extype = excitationTypes(j)
call convertOrbIdsToModelSpaceIds(alphas_Icfg(1,1,k), connectedI_alpha(1,1,j), p, q, extype, pmodel, qmodel)
rowsikpq = AIJpqMatrixDimsList(NSOMOalpha,extype,pmodel,qmodel,1)
colsikpq = AIJpqMatrixDimsList(NSOMOalpha,extype,pmodel,qmodel,2)
rowsTKI = rowsikpq
CCmattmp = 0.d0
call dgemm('N','N', n_st, colsikpq, rowsTKI, 1.d0, &
TKIGIJ(1,1,j), size(TKIGIJ,1), &
AIJpqContainer(1,1,pmodel,qmodel,extype,NSOMOalpha), &
size(AIJpqContainer,1), 0.d0, &
CCmattmp, size(CCmattmp,1) )
do m = 1,colsikpq
call omp_set_lock(lock(idxs_connectedI_alpha(j)+m-1))
do kk = 1,n_st
psi_out(kk,idxs_connectedI_alpha(j)+m-1) += CCmattmp(kk,m)
enddo
call omp_unset_lock(lock(idxs_connectedI_alpha(j)+m-1))
enddo
totcolsTKI += colsikpq
enddo
deallocate(TKI) ! coefficients of CSF
deallocate(GIJpqrs) ! gpqrs
deallocate(TKIGIJ) ! gpqrs
enddo ! loop over alphas
enddo ! loop over I
!$OMP END DO
call omp_set_max_active_levels(4)
deallocate(CCmattmp)
deallocate(connectedI_alpha)
deallocate(idxs_connectedI_alpha)
deallocate(excitationIds)
deallocate(excitationTypes)
deallocate(diagfactors)
! Add the diagonal contribution
!$OMP DO
do i = 1,n_CSF
do kk=1,n_st
psi_out(kk,i) += diag_energies(i)*psi_in(kk,i)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call omp_set_max_active_levels(4)
deallocate(diag_energies)
deallocate(bit_tmp)
end subroutine calculate_sigma_vector_cfg_nst_naive_store
subroutine calculate_sigma_vector_cfg_nst(psi_out, psi_in, n_st, sze, istart, iend, ishift, istep)
implicit none
use bitmasks
BEGIN_DOC
! Documentation for sigma-vector calculation
!
! Calculates the result of the
! application of the hamiltonian to the
! wavefunction in CFG basis once
! TODO : Things prepare outside this routine
! 1. Touch the providers for
! a. ApqIJ containers
! b. DET to CSF transformation matrices
! 2. DET to CSF transcormation
! 2. CSF to DET back transcormation
! returns : psi_coef_out_det :
END_DOC
integer,intent(in) :: sze, istart,iend, istep, ishift, n_st
real*8,intent(in) :: psi_in(sze,n_st)
real*8,intent(out) :: psi_out(sze,n_st)
integer(bit_kind) :: Icfg(N_INT,2)
integer :: i,j,k,l,p,q,noccp,noccq, ii, jj, m, n, idxI, kk, nocck,orbk
integer(bit_kind),dimension(:,:,:),allocatable :: alphas_Icfg
integer(bit_kind),dimension(:,:,:),allocatable :: singlesI
integer(bit_kind),dimension(:,:,:),allocatable :: connectedI_alpha
integer,dimension(:),allocatable :: idxs_singlesI
integer,dimension(:),allocatable :: idxs_connectedI_alpha
integer,dimension(:,:),allocatable :: excitationIds_single
integer,dimension(:),allocatable :: excitationTypes_single
integer,dimension(:,:),allocatable :: excitationIds
integer,dimension(:),allocatable :: excitationTypes
real*8,dimension(:),allocatable :: diagfactors
integer :: nholes
integer :: nvmos
integer :: listvmos(mo_num)
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
integer :: listholes(mo_num)
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
integer :: Nalphas_Icfg, nconnectedI, rowsikpq, colsikpq, nsinglesI
integer :: extype,NSOMOalpha,NSOMOI,NSOMOJ,pmodel,qmodel
integer :: getNSOMO
integer :: totcolsTKI
integer :: rowsTKI
integer :: noccpp
integer :: istart_cfg, iend_cfg
integer*8 :: MS, Isomo, Idomo, Jsomo, Jdomo, Ialpha, Ibeta
integer :: moi, moj, mok, mol, starti, endi, startj, endj, cnti, cntj, cntk
real*8 :: norm_coef_cfg, fac2eints
real*8 :: norm_coef_det
real*8 :: meCC1, meCC2, diagfac
real*8,dimension(:,:,:),allocatable :: TKI
real*8,dimension(:,:),allocatable :: GIJpqrs
real*8,dimension(:,:,:),allocatable :: TKIGIJ
real*8, external :: mo_two_e_integral
real*8, external :: get_two_e_integral
real*8 :: diag_energies(n_CSF)
! allocate
allocate(alphas_Icfg(N_INT,2,max(sze/2,100)))
allocate(singlesI(N_INT,2,max(sze/2,100)))
allocate(connectedI_alpha(N_INT,2,max(sze/2,100)))
allocate(idxs_singlesI(max(sze/2,100)))
allocate(idxs_connectedI_alpha(max(sze/2,100)))
allocate(excitationIds_single(2,max(sze/2,100)))
allocate(excitationTypes_single(max(sze/2,100)))
allocate(excitationIds(2,max(sze/2,100)))
allocate(excitationTypes(max(sze/2,100)))
allocate(diagfactors(max(sze/2,100)))
!print *," sze = ",sze
call calculate_preconditioner_cfg(diag_energies)
MS = 0
norm_coef_cfg=0.d0
psi_out=0.d0
istart_cfg = psi_csf_to_config_data(istart)
iend_cfg = psi_csf_to_config_data(iend)
!!! Single Excitations !!!
do i=istart_cfg,iend_cfg
print *,"I=",i
! if Seniority_range > 8 then
! continue
! else
! cycle
Icfg(1,1) = psi_configuration(1,1,i)
Icfg(1,2) = psi_configuration(1,2,i)
starti = psi_config_data(i,1)
endi = psi_config_data(i,2)
! Returns all unique (checking the past) singly excited cfgs connected to I
Nalphas_Icfg = 0
! TODO:
! test if size(alphas_Icfg,1) < Nmo**2) then deallocate + allocate
!call obtain_associated_alphaI(i, Icfg, alphas_Icfg, Nalphas_Icfg)
Nalphas_Icfg = NalphaIcfg_list(i)
alphas_Icfg(1:N_int,1:2,1:Nalphas_Icfg) = alphasIcfg_list(1:n_int,1:2,i,1:Nalphas_Icfg)
! TODO : remove doubly excited for return
! Here we do 2x the loop. One to count for the size of the matrix, then we compute.
do k = 1,Nalphas_Icfg
! Now generate all singly excited with respect to a given alpha CFG
call obtain_connected_I_foralpha(i,alphas_Icfg(1,1,k),connectedI_alpha,idxs_connectedI_alpha,nconnectedI,excitationIds,excitationTypes,diagfactors)
totcolsTKI = 0
rowsTKI = -1
do j = 1,nconnectedI
NSOMOalpha = getNSOMO(alphas_Icfg(1,1,k))
NSOMOI = getNSOMO(connectedI_alpha(1,1,j))
p = excitationIds(1,j)
q = excitationIds(2,j)
extype = excitationTypes(j)
call convertOrbIdsToModelSpaceIds(alphas_Icfg(1,1,k), connectedI_alpha(1,1,j), p, q, extype, pmodel, qmodel)
! for E_pp E_rs and E_ppE_rr case
if(p.EQ.q) then
NSOMOalpha = NSOMOI
endif
rowsikpq = AIJpqMatrixDimsList(NSOMOalpha,extype,pmodel,qmodel,1)
colsikpq = AIJpqMatrixDimsList(NSOMOalpha,extype,pmodel,qmodel,2)
totcolsTKI += colsikpq
! if(rowsTKI .LT. rowsikpq .AND. rowsTKI .NE. -1) then
! print *,">",j,"Something is wrong in sigma-vector", rowsTKI, rowsikpq, "(p,q)=",pmodel,qmodel,"ex=",extype,"na=",NSOMOalpha," nI=",NSOMOI
! !rowsTKI = rowsikpq
! else
rowsTKI = rowsikpq
! endif
enddo
allocate(TKI(n_st,rowsTKI,totcolsTKI)) ! coefficients of CSF
! Initialize the inegral container
! dims : (totcolsTKI, nconnectedI)
allocate(GIJpqrs(totcolsTKI,nconnectedI)) ! gpqrs
allocate(TKIGIJ(n_st,rowsTKI,nconnectedI)) ! TKI * gpqrs
totcolsTKI = 0
do j = 1,nconnectedI
NSOMOalpha = getNSOMO(alphas_Icfg(1,1,k))
NSOMOI = getNSOMO(connectedI_alpha(1,1,j))
p = excitationIds(1,j)
q = excitationIds(2,j)
extype = excitationTypes(j)
call convertOrbIdsToModelSpaceIds(alphas_Icfg(1,1,k), connectedI_alpha(1,1,j), p, q, extype, pmodel, qmodel)
rowsikpq = AIJpqMatrixDimsList(NSOMOalpha,extype,pmodel,qmodel,1)
colsikpq = AIJpqMatrixDimsList(NSOMOalpha,extype,pmodel,qmodel,2)
do m = 1,colsikpq
do l = 1,rowsTKI
do kk = 1,n_st
TKI(kk,l,totcolsTKI+m) = AIJpqContainer(l,m,pmodel,qmodel,extype,NSOMOalpha) * psi_in(kk,idxs_connectedI_alpha(j)+m-1)
enddo
enddo
enddo
do m = 1,colsikpq
do l = 1,nconnectedI
! <ij|kl> = (ik|jl)
moi = excitationIds(1,j) ! p
mok = excitationIds(2,j) ! q
moj = excitationIds(2,l) ! s
mol = excitationIds(1,l) ! r
if(moi.EQ.mok .AND. moj.EQ.mol)then
diagfac = diagfactors(j)
diagfac *= diagfactors(l)
!print *,"integrals (",totcolsTKI+m,l,")",mok,moi,mol,moj, "|", diagfac
GIJpqrs(totcolsTKI+m,l) = diagfac*0.5d0*mo_two_e_integral(mok,mol,moi,moj) ! g(pq,sr) = <ps,qr>
else
diagfac = diagfactors(j)*diagfactors(l)
!print *,"integrals (",totcolsTKI+m,l,")",mok,moi,mol,moj, "|", diagfac
GIJpqrs(totcolsTKI+m,l) = diagfac*0.5d0*mo_two_e_integral(mok,mol,moi,moj) ! g(pq,sr) = <ps,qr>
!endif
endif
enddo
enddo
totcolsTKI += colsikpq
enddo
! Do big BLAS
! TODO TKI, size(TKI,1)*size(TKI,2)
call dgemm('N','N', rowsTKI*n_st, nconnectedI, totcolsTKI, 1.d0,&
TKI, size(TKI,1)*size(TKI,2), GIJpqrs, size(GIJpqrs,1), 0.d0,&
TKIGIJ , size(TKIGIJ,1)*size(TKIGIJ,2) )
! Collect the result
totcolsTKI = 0
do j = 1,nconnectedI
NSOMOalpha = getNSOMO(alphas_Icfg(1,1,k))
NSOMOI = getNSOMO(connectedI_alpha(1,1,j))
p = excitationIds(1,j)
q = excitationIds(2,j)
extype = excitationTypes(j)
call convertOrbIdsToModelSpaceIds(alphas_Icfg(:,:,k), connectedI_alpha(:,:,j), p, q, extype, pmodel, qmodel)
rowsikpq = AIJpqMatrixDimsList(NSOMOalpha,extype,pmodel,qmodel,1)
colsikpq = AIJpqMatrixDimsList(NSOMOalpha,extype,pmodel,qmodel,2)
do m = 1,colsikpq
do l = 1,rowsTKI
do kk = 1,n_st
psi_out(kk,idxs_connectedI_alpha(j)+m-1) = psi_out(kk,idxs_connectedI_alpha(j)+m-1) + &
AIJpqContainer(l,m,pmodel,qmodel,extype,NSOMOalpha) * TKIGIJ(kk,l,j)
enddo
enddo
enddo
totcolsTKI += colsikpq
enddo
deallocate(TKI) ! coefficients of CSF
! Initialize the inegral container
! dims : (totcolsTKI, nconnectedI)
deallocate(GIJpqrs) ! gpqrs
deallocate(TKIGIJ) ! gpqrs
enddo ! loop over alphas
enddo ! loop over I
deallocate(connectedI_alpha)
deallocate(idxs_connectedI_alpha)
deallocate(excitationIds)
deallocate(excitationTypes)
deallocate(diagfactors)
! Add the diagonal contribution
do i = 1,n_CSF
do kk=1,n_st
psi_out(kk,i) += diag_energies(i)*psi_in(kk,i)
enddo
enddo
call omp_set_max_active_levels(4)
end subroutine calculate_sigma_vector_cfg_nst_naive_store