9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-13 17:03:39 +01:00
qp2/src/mo_optimization/run_orb_opt_trust_v2.irp.f
2023-04-18 13:56:30 +02:00

318 lines
12 KiB
Fortran

! Subroutine : run_orb_opt_trust
! Subroutine to optimize the MOs using a trust region algorithm:
! - choice of the method
! - initialization
! - optimization until convergence
! The optimization use the trust region algorithm, the different parts
! are explained in the corresponding subroutine files.
! qp_edit:
! | thresh_opt_max_elem_grad |
! | optimization_max_nb_iter |
! | optimization_method |
! Provided:
! | mo_num | integer | number of MOs |
! | ao_num | integer | number of AOs |
! | N_states | integer | number of states |
! | ci_energy(N_states) | double precision | CI energies |
! | state_average_weight(N_states) | double precision | Weight of the different states |
! Variables:
! | m | integer | number of active MOs |
! | tmp_n | integer | m*(m-1)/2, number of MO parameters |
! | tmp_n2 | integer | m*(m-1)/2 or 1 if the hessian is diagonal |
! | v_grad(tmp_n) | double precision | gradient |
! | H(tmp_n,tmp_n) | double precision | hessian (2D) |
! | h_f(m,m,m,m) | double precision | hessian (4D) |
! | e_val(m) | double precision | eigenvalues of the hessian |
! | w(m,m) | double precision | eigenvectors of the hessian |
! | x(m) | double precision | step given by the trust region |
! | m_x(m,m) | double precision | step given by the trust region after |
! | tmp_R(m,m) | double precision | rotation matrix for active MOs |
! | R(mo_num,mo_num) | double precision | full rotation matrix |
! | prev_mos(ao_num,mo_num) | double precision | previous MOs (before the rotation) |
! | new_mos(ao_num,mo_num) | double precision | new MOs (after the roration) |
! | delta | double precision | radius of the trust region |
! | rho | double precision | agreement between the model and the exact function |
! | max_elem | double precision | maximum element in the gradient |
! | i | integer | index |
! | tmp_i,tmp_j | integer | indexes in the subspace containing only |
! | | | the active MOs |
! | converged | logical | convergence of the algorithm |
! | cancel_step | logical | if the step must be cancelled |
! | nb_iter | integer | number of iterations (accepted) |
! | nb_diag | integer | number of diagonalizations of the CI matrix |
! | nb_cancel | integer | number of cancelled steps for the actual iteration |
! | nb_cancel_tot | integer | total number of cancel steps |
! | info | integer | if 0 ok, else problem in the diagonalization of |
! | | | the hessian with the Lapack routine |
! | criterion | double precision | energy at a given step |
! | prev_criterion | double precision | energy before the rotation |
! | criterion_model | double precision | estimated energy after the rotation using |
! | | | a Taylor series |
! | must_exit | logical | To exit the trust region algorithm when |
! | | | criterion - criterion_model is too small |
! | enforce_step_cancellation | logical | To force the cancellation of the step if the |
! | | | error in the rotation matrix is too large |
subroutine run_orb_opt_trust_v2
include 'constants.h'
implicit none
BEGIN_DOC
! Orbital optimization
END_DOC
! Variables
double precision, allocatable :: R(:,:)
double precision, allocatable :: H(:,:),h_f(:,:,:,:)
double precision, allocatable :: v_grad(:)
double precision, allocatable :: prev_mos(:,:),new_mos(:,:)
integer :: info
integer :: n
integer :: i,j,p,q,k
double precision :: max_elem_grad, delta, rho, norm_grad, normalization_factor
logical :: cancel_step
integer :: nb_iter, nb_diag, nb_cancel, nb_cancel_tot, nb_sub_iter
double precision :: t1, t2, t3
double precision :: prev_criterion, criterion, criterion_model
logical :: not_converged, must_exit, enforce_step_cancellation
integer :: m, tmp_n, tmp_i, tmp_j, tmp_k, tmp_n2
integer,allocatable :: tmp_list(:), key(:)
double precision, allocatable :: tmp_m_x(:,:),tmp_R(:,:), tmp_x(:), W(:,:), e_val(:)
PROVIDE mo_two_e_integrals_in_map ci_energy psi_det psi_coef
! Allocation
allocate(R(mo_num,mo_num)) ! rotation matrix
allocate(prev_mos(ao_num,mo_num), new_mos(ao_num,mo_num)) ! old and new MOs
! Definition of m and tmp_n
m = dim_list_act_orb
tmp_n = m*(m-1)/2
allocate(tmp_list(m))
allocate(tmp_R(m,m), tmp_m_x(m,m), tmp_x(tmp_n))
allocate(e_val(tmp_n),key(tmp_n),v_grad(tmp_n))
! Method
! There are three different methods :
! - the "full" hessian, which uses all the elements of the hessian
! matrix"
! - the "diagonal" hessian, which uses only the diagonal elements of the
! hessian
! - without the hessian (hessian = identity matrix)
!Display the method
print*, 'Method :', optimization_method
if (optimization_method == 'full') then
print*, 'Full hessian'
allocate(H(tmp_n,tmp_n), h_f(m,m,m,m),W(tmp_n,tmp_n))
tmp_n2 = tmp_n
elseif (optimization_method == 'diag') then
print*,'Diagonal hessian'
allocate(H(tmp_n,1),W(tmp_n,1))
tmp_n2 = 1
elseif (optimization_method == 'none') then
print*,'No hessian'
allocate(H(tmp_n,1),W(tmp_n,1))
tmp_n2 = 1
else
print*,'Unknown optimization_method, please select full, diag or none'
call abort
endif
print*, 'Absolute value of the hessian:', absolute_eig
! Algorithm
! Here is the main algorithm of the optimization:
! - First of all we initialize some parameters and we compute the
! criterion (the ci energy) before doing any MO rotations
! - We compute the gradient and the hessian for the active MOs
! - We diagonalize the hessian
! - We compute a step and loop to reduce the radius of the
! trust region (and the size of the step by the way) until the step is
! accepted
! - We repeat the process until the convergence
! NB: the convergence criterion can be changed
! Loop until the convergence of the optimization
! call diagonalize_ci
!### Initialization ###
nb_iter = 0
rho = 0.5d0
not_converged = .True.
tmp_list = list_act ! Optimization of the active MOs
nb_cancel_tot = 0
! Renormalization of the weights of the states
call state_weight_normalization
! Compute the criterion before the loop
call state_average_energy(prev_criterion)
do while (not_converged)
print*,''
print*,'******************'
print*,'Iteration', nb_iter
print*,'******************'
print*,''
! Gradient
call gradient_list_opt(tmp_n, m, tmp_list, v_grad, max_elem_grad, norm_grad)
! Hessian
if (optimization_method == 'full') then
! Full hessian
call hessian_list_opt(tmp_n, m, tmp_list, H, h_f)
! Diagonalization of the hessian
call diagonalization_hessian(tmp_n, H, e_val, w)
elseif (optimization_method == 'diag') then
! Diagonal hessian
call diag_hessian_list_opt(tmp_n, m, tmp_list, H)
else
! Identity matrix
do tmp_i = 1, tmp_n
H(tmp_i,1) = 1d0
enddo
endif
if (optimization_method /= 'full') then
! Sort
do tmp_i = 1, tmp_n
key(tmp_i) = tmp_i
e_val(tmp_i) = H(tmp_i,1)
enddo
call dsort(e_val,key,tmp_n)
! Eigenvalues and eigenvectors
do tmp_i = 1, tmp_n
w(tmp_i,1) = dble(key(tmp_i))
enddo
endif
! Init before the internal loop
cancel_step = .True. ! To enter in the loop just after
nb_cancel = 0
nb_sub_iter = 0
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
do while (cancel_step)
print*,''
print*,'-----------------------------'
print*,'Iteration: ', nb_iter
print*,'Sub iteration:', nb_sub_iter
print*,'Max elem grad:', max_elem_grad
print*,'-----------------------------'
! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n,tmp_n2,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,tmp_x,must_exit)
if (must_exit) then
print*,'step_in_trust_region sends: Exit'
exit
endif
! 1D tmp -> 2D tmp
call vec_to_mat_v2(tmp_n, m, tmp_x, tmp_m_x)
! Rotation matrix for the active MOs
call rotation_matrix(tmp_m_x, m, tmp_R, m, m, info, enforce_step_cancellation)
! Security to ensure an unitary transformation
if (enforce_step_cancellation) then
print*, 'Step cancellation, too large error in the rotation matrix'
rho = 0d0
cycle
endif
! tmp_R to R, subspace to full space
call sub_to_full_rotation_matrix(m, tmp_list, tmp_R, R)
! MO rotations
call apply_mo_rotation(R, prev_mos)
! Update of the energy before the diagonalization of the hamiltonian
call clear_mo_map
TOUCH mo_coef psi_det psi_coef ci_energy two_e_dm_mo
call state_average_energy(criterion)
! Criterion -> step accepted or rejected
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, criterion_model, rho, cancel_step)
! Cancellation of the step if necessary
if (cancel_step) then
mo_coef = prev_mos
call save_mos()
nb_cancel = nb_cancel + 1
nb_cancel_tot = nb_cancel_tot + 1
else
! Diagonalization of the hamiltonian
FREE ci_energy! To enforce the recomputation
call diagonalize_ci
call save_wavefunction_unsorted
! Energy obtained after the diagonalization of the CI matrix
call state_average_energy(prev_criterion)
endif
nb_sub_iter = nb_sub_iter + 1
enddo
call save_mos() !### depend of the time for 1 iteration
! To exit the external loop if must_exit = .True.
if (must_exit) then
exit
endif
! Step accepted, nb iteration + 1
nb_iter = nb_iter + 1
! External loop exit conditions
if (DABS(max_elem_grad) < thresh_opt_max_elem_grad) then
print*,'Converged: DABS(max_elem_grad) < thresh_opt_max_elem_grad'
not_converged = .False.
endif
if (nb_iter >= optimization_max_nb_iter) then
print*,'Not converged: nb_iter >= optimization_max_nb_iter'
not_converged = .False.
endif
if (.not. not_converged) then
print*,'#############################'
print*,' End of the optimization'
print*,'#############################'
endif
enddo
! Deallocation, end
deallocate(v_grad,H,R,W,e_val)
deallocate(prev_mos,new_mos)
if (optimization_method == 'full') then
deallocate(h_f)
endif
end