mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-03 00:55:38 +01:00
75 lines
2.8 KiB
Fortran
75 lines
2.8 KiB
Fortran
BEGIN_PROVIDER [double precision, short_range_Hartree_operator, (mo_num,mo_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, short_range_Hartree, (N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! short_range_Hartree_operator(i,j) = $\int dr i(r)j(r) \int r' \rho(r') W_{ee}^{sr}$
|
|
!
|
|
! short_range_Hartree = $1/2 \sum_{i,j} \rho_{ij} \mathtt{short_range_Hartree_operator}(i,j)$
|
|
!
|
|
! = $1/2 \int dr \int r' \rho(r) \rho(r') W_{ee}^{sr}$
|
|
END_DOC
|
|
integer :: i,j,k,l,m,n,istate
|
|
double precision :: get_two_e_integral,get_mo_two_e_integral_erf
|
|
double precision :: integral, integral_erf, contrib
|
|
double precision :: integrals_array(mo_num,mo_num),integrals_erf_array(mo_num,mo_num)
|
|
short_range_Hartree_operator = 0.d0
|
|
short_range_Hartree = 0.d0
|
|
do i = 1, mo_num
|
|
do j = 1, mo_num
|
|
if(dabs(one_e_dm_average_mo_for_dft(j,i)).le.1.d-12)cycle
|
|
call get_mo_two_e_integrals_i1j1(i,j,mo_num,integrals_array,mo_integrals_map)
|
|
call get_mo_two_e_integrals_erf_i1j1(i,j,mo_num,integrals_erf_array,mo_integrals_erf_map)
|
|
do istate = 1, N_states
|
|
do k = 1, mo_num
|
|
do l = 1, mo_num
|
|
integral = integrals_array(l,k)
|
|
integral_erf = integrals_erf_array(l,k)
|
|
contrib = one_e_dm_mo_for_dft(i,j,istate) * (integral - integral_erf)
|
|
short_range_Hartree_operator(l,k,istate) += contrib
|
|
short_range_Hartree(istate) += contrib * one_e_dm_mo_for_dft(k,l,istate)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
short_range_Hartree = short_range_Hartree * 0.5d0
|
|
print*, 'short_range_Hartree',short_range_Hartree
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, regular_range_Hartree_operator, (mo_num,mo_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, regular_range_Hartree, (N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! regular_range_Hartree_operator(i,j) = $\int dr i(r)j(r) \int r' \rho(r') W_{ee}^{sr}$
|
|
!
|
|
! regular_range_Hartree = $1/2 \sum_{i,j} \rho_{ij} \mathtt{regular_range_Hartree_operator}(i,j)$
|
|
!
|
|
! = $1/2 \int dr \int r' \rho(r) \rho(r') W_{ee}^{sr}$
|
|
END_DOC
|
|
integer :: i,j,k,l,m,n,istate
|
|
double precision :: get_two_e_integral
|
|
double precision :: integral, contrib
|
|
double precision :: integrals_array(mo_num,mo_num)
|
|
regular_range_Hartree_operator = 0.d0
|
|
regular_range_Hartree = 0.d0
|
|
do i = 1, mo_num
|
|
do j = 1, mo_num
|
|
if(dabs(one_e_dm_average_mo_for_dft(j,i)).le.1.d-12)cycle
|
|
call get_mo_two_e_integrals_i1j1(i,j,mo_num,integrals_array,mo_integrals_map)
|
|
do istate = 1, N_states
|
|
do k = 1, mo_num
|
|
do l = 1, mo_num
|
|
integral = integrals_array(l,k)
|
|
contrib = one_e_dm_mo_for_dft(i,j,istate) * integral
|
|
regular_range_Hartree_operator(l,k,istate) += contrib
|
|
regular_range_Hartree(istate) += contrib * one_e_dm_mo_for_dft(k,l,istate)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
regular_range_Hartree = regular_range_Hartree * 0.5d0
|
|
print*, 'regular_range_Hartree',regular_range_Hartree
|
|
END_PROVIDER
|