mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-10-11 02:11:30 +02:00
410 lines
14 KiB
Fortran
410 lines
14 KiB
Fortran
|
|
! ---
|
|
|
|
use bitmasks
|
|
|
|
! ---
|
|
|
|
BEGIN_PROVIDER [integer, index_HF_psi_det]
|
|
|
|
implicit none
|
|
integer :: i, degree
|
|
|
|
do i = 1, N_det
|
|
call get_excitation_degree(HF_bitmask, psi_det(1,1,i), degree, N_int)
|
|
if(degree == 0) then
|
|
index_HF_psi_det = i
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
! ---
|
|
|
|
subroutine diagonalize_CI_tc()
|
|
|
|
BEGIN_DOC
|
|
! Replace the coefficients of the |CI| states by the coefficients of the
|
|
! eigenstates of the |CI| matrix.
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer :: i, j
|
|
|
|
do j = 1, N_states
|
|
do i = 1, N_det
|
|
psi_l_coef_bi_ortho(i,j) = leigvec_tc_bi_orth(i,j)
|
|
psi_r_coef_bi_ortho(i,j) = reigvec_tc_bi_orth(i,j)
|
|
enddo
|
|
enddo
|
|
|
|
SOFT_TOUCH psi_l_coef_bi_ortho psi_r_coef_bi_ortho
|
|
|
|
end
|
|
|
|
! ---
|
|
|
|
BEGIN_PROVIDER [double precision, eigval_right_tc_bi_orth , (N_states) ]
|
|
&BEGIN_PROVIDER [double precision, eigval_left_tc_bi_orth , (N_states) ]
|
|
&BEGIN_PROVIDER [double precision, reigvec_tc_bi_orth , (N_det,N_states)]
|
|
&BEGIN_PROVIDER [double precision, leigvec_tc_bi_orth , (N_det,N_states)]
|
|
&BEGIN_PROVIDER [double precision, s2_eigvec_tc_bi_orth , (N_states) ]
|
|
&BEGIN_PROVIDER [double precision, norm_ground_left_right_bi_orth , (N_states) ]
|
|
|
|
BEGIN_DOC
|
|
! eigenvalues, right and left eigenvectors of the transcorrelated Hamiltonian on the BI-ORTHO basis
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer :: i, idx_dress, j, istate, k
|
|
integer :: i_good_state, i_other_state, i_state
|
|
integer :: n_real_tc_bi_orth_eigval_right, igood_r, igood_l
|
|
logical :: converged, dagger
|
|
double precision, parameter :: alpha = 0.1d0
|
|
integer, allocatable :: index_good_state_array(:)
|
|
integer, allocatable :: iorder(:)
|
|
logical, allocatable :: good_state_array(:)
|
|
double precision, allocatable :: reigvec_tc_bi_orth_tmp(:,:), leigvec_tc_bi_orth_tmp(:,:),eigval_right_tmp(:)
|
|
double precision, allocatable :: s2_values_tmp(:), H_prime(:,:), expect_e(:)
|
|
double precision, allocatable :: coef_hf_r(:),coef_hf_l(:)
|
|
double precision, allocatable :: Stmp(:,:)
|
|
|
|
PROVIDE N_det N_int
|
|
|
|
if(N_det .le. N_det_max_full) then
|
|
|
|
allocate(reigvec_tc_bi_orth_tmp(N_det,N_det), leigvec_tc_bi_orth_tmp(N_det,N_det), eigval_right_tmp(N_det), expect_e(N_det))
|
|
allocate(H_prime(N_det,N_det), s2_values_tmp(N_det))
|
|
|
|
H_prime(1:N_det,1:N_det) = htilde_matrix_elmt_bi_ortho(1:N_det,1:N_det)
|
|
if(s2_eig) then
|
|
H_prime(1:N_det,1:N_det) += alpha * S2_matrix_all_dets(1:N_det,1:N_det)
|
|
do j = 1, N_det
|
|
H_prime(j,j) = H_prime(j,j) - alpha*expected_s2
|
|
enddo
|
|
endif
|
|
|
|
call non_hrmt_real_diag(N_det, H_prime, leigvec_tc_bi_orth_tmp, reigvec_tc_bi_orth_tmp, n_real_tc_bi_orth_eigval_right, eigval_right_tmp)
|
|
if(N_states.gt.1)then
|
|
print*,'n_real_tc_bi_orth_eigval_right = ',n_real_tc_bi_orth_eigval_right
|
|
endif
|
|
! do i = 1, N_det
|
|
! call get_H_tc_s2_l0_r0(leigvec_tc_bi_orth_tmp(1,i),reigvec_tc_bi_orth_tmp(1,i),1,N_det,expect_e(i), s2_values_tmp(i))
|
|
! enddo
|
|
call get_H_tc_s2_l0_r0(leigvec_tc_bi_orth_tmp,reigvec_tc_bi_orth_tmp,N_det,N_det,expect_e, s2_values_tmp)
|
|
|
|
|
|
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
|
i_state = 0
|
|
good_state_array = .False.
|
|
|
|
if(s2_eig) then
|
|
if(only_expected_s2) then
|
|
do j = 1, N_det
|
|
! Select at least n_states states with S^2 values closed to "expected_s2"
|
|
! print*,'s2_values_tmp(j) = ',s2_values_tmp(j),eigval_right_tmp(j),expect_e(j)
|
|
if(dabs(s2_values_tmp(j) - expected_s2).le.0.5d0)then
|
|
i_state +=1
|
|
index_good_state_array(i_state) = j
|
|
good_state_array(j) = .True.
|
|
endif
|
|
if(i_state.eq.N_states) then
|
|
exit
|
|
endif
|
|
enddo
|
|
else
|
|
do j = 1, N_det
|
|
index_good_state_array(j) = j
|
|
good_state_array(j) = .True.
|
|
enddo
|
|
endif
|
|
if(N_states.gt.1)then
|
|
print*,'i_state = ',i_state
|
|
endif
|
|
|
|
if(i_state .ne. 0) then
|
|
! Fill the first "i_state" states that have a correct S^2 value
|
|
do j = 1, i_state
|
|
do i = 1, N_det
|
|
reigvec_tc_bi_orth(i,j) = reigvec_tc_bi_orth_tmp(i,index_good_state_array(j))
|
|
leigvec_tc_bi_orth(i,j) = leigvec_tc_bi_orth_tmp(i,index_good_state_array(j))
|
|
enddo
|
|
eigval_right_tc_bi_orth(j) = expect_e(index_good_state_array(j))
|
|
eigval_left_tc_bi_orth(j) = expect_e(index_good_state_array(j))
|
|
s2_eigvec_tc_bi_orth(j) = s2_values_tmp(index_good_state_array(j))
|
|
enddo
|
|
i_other_state = 0
|
|
do j = 1, N_det
|
|
if(good_state_array(j))cycle
|
|
i_other_state +=1
|
|
if(i_state+i_other_state.gt.n_states)then
|
|
exit
|
|
endif
|
|
do i = 1, N_det
|
|
reigvec_tc_bi_orth(i,i_state+i_other_state) = reigvec_tc_bi_orth_tmp(i,j)
|
|
leigvec_tc_bi_orth(i,i_state+i_other_state) = leigvec_tc_bi_orth_tmp(i,j)
|
|
enddo
|
|
eigval_right_tc_bi_orth(i_state+i_other_state) = eigval_right_tmp(j)
|
|
eigval_left_tc_bi_orth (i_state+i_other_state) = eigval_right_tmp(j)
|
|
s2_eigvec_tc_bi_orth(i_state+i_other_state) = s2_values_tmp(i_state+i_other_state)
|
|
enddo
|
|
else ! istate == 0
|
|
print*,''
|
|
print*,'!!!!!!!! WARNING !!!!!!!!!'
|
|
print*,' Within the ',N_det,'determinants selected'
|
|
print*,' and the ',N_states_diag,'states requested'
|
|
print*,' We did not find only states with S^2 values close to ',expected_s2
|
|
print*,' We will then set the first N_states eigenvectors of the H matrix'
|
|
print*,' as the CI_eigenvectors'
|
|
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
|
|
print*,''
|
|
do j = 1, min(N_states_diag, N_det)
|
|
do i = 1, N_det
|
|
leigvec_tc_bi_orth(i,j) = leigvec_tc_bi_orth_tmp(i,j)
|
|
reigvec_tc_bi_orth(i,j) = reigvec_tc_bi_orth_tmp(i,j)
|
|
enddo
|
|
eigval_right_tc_bi_orth(j) = eigval_right_tmp(j)
|
|
eigval_left_tc_bi_orth (j) = eigval_right_tmp(j)
|
|
s2_eigvec_tc_bi_orth(j) = s2_values_tmp(j)
|
|
enddo
|
|
endif ! istate .ne. 0
|
|
|
|
else ! s2_eig
|
|
|
|
allocate(coef_hf_r(N_det),coef_hf_l(N_det),iorder(N_det))
|
|
do i = 1,N_det
|
|
iorder(i) = i
|
|
coef_hf_r(i) = -dabs(reigvec_tc_bi_orth_tmp(index_HF_psi_det,i))
|
|
enddo
|
|
call dsort(coef_hf_r,iorder,N_det)
|
|
igood_r = iorder(1)
|
|
print*,'igood_r, coef_hf_r = ',igood_r,coef_hf_r(1)
|
|
do i = 1,N_det
|
|
iorder(i) = i
|
|
coef_hf_l(i) = -dabs(leigvec_tc_bi_orth_tmp(index_HF_psi_det,i))
|
|
enddo
|
|
call dsort(coef_hf_l,iorder,N_det)
|
|
igood_l = iorder(1)
|
|
print*,'igood_l, coef_hf_l = ',igood_l,coef_hf_l(1)
|
|
|
|
if(igood_r.ne.igood_l .and. igood_r.ne.1) then
|
|
print *,''
|
|
print *,'Warning, the left and right eigenvectors are "not the same" '
|
|
print *,'Warning, the ground state is not dominated by HF...'
|
|
print *,'State with largest RIGHT coefficient of HF ',igood_r
|
|
print *,'coef of HF in RIGHT eigenvector = ',reigvec_tc_bi_orth_tmp(index_HF_psi_det,igood_r)
|
|
print *,'State with largest LEFT coefficient of HF ',igood_l
|
|
print *,'coef of HF in LEFT eigenvector = ',leigvec_tc_bi_orth_tmp(index_HF_psi_det,igood_l)
|
|
endif
|
|
|
|
if(state_following_tc) then
|
|
print *,'Following the states with the largest coef on HF'
|
|
print *,'igood_r,igood_l',igood_r,igood_l
|
|
i = igood_r
|
|
eigval_right_tc_bi_orth(1) = eigval_right_tmp(i)
|
|
do j = 1, N_det
|
|
reigvec_tc_bi_orth(j,1) = reigvec_tc_bi_orth_tmp(j,i)
|
|
enddo
|
|
i = igood_l
|
|
eigval_left_tc_bi_orth(1) = eigval_right_tmp(i)
|
|
do j = 1, N_det
|
|
leigvec_tc_bi_orth(j,1) = leigvec_tc_bi_orth_tmp(j,i)
|
|
enddo
|
|
else
|
|
do i = 1, N_states
|
|
eigval_right_tc_bi_orth(i) = eigval_right_tmp(i)
|
|
eigval_left_tc_bi_orth(i) = eigval_right_tmp(i)
|
|
do j = 1, N_det
|
|
reigvec_tc_bi_orth(j,i) = reigvec_tc_bi_orth_tmp(j,i)
|
|
leigvec_tc_bi_orth(j,i) = leigvec_tc_bi_orth_tmp(j,i)
|
|
enddo
|
|
enddo
|
|
endif
|
|
|
|
endif
|
|
|
|
else ! n_det > N_det_max_full
|
|
|
|
double precision, allocatable :: H_jj(:),vec_tmp(:,:)
|
|
external H_tc_u_0_opt
|
|
external H_tc_dagger_u_0_opt
|
|
external H_tc_s2_dagger_u_0_opt
|
|
external H_tc_s2_u_0_opt
|
|
external H_tc_s2_dagger_u_0_with_pure_three_omp
|
|
external H_tc_s2_u_0_with_pure_three_omp
|
|
|
|
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag))
|
|
|
|
! TODO : OPEN-MP
|
|
do i = 1, N_det
|
|
call htilde_mu_mat_opt_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
|
|
enddo
|
|
|
|
print*,'---------------------------------'
|
|
print*,'---------------------------------'
|
|
print*,'Computing the left-eigenvector '
|
|
print*,'---------------------------------'
|
|
print*,'---------------------------------'
|
|
!!!! Preparing the left-eigenvector
|
|
vec_tmp = 0.d0
|
|
do istate = 1, N_states
|
|
vec_tmp(1:N_det,istate) = psi_l_coef_bi_ortho(1:N_det,istate)
|
|
enddo
|
|
do istate = N_states+1, n_states_diag
|
|
vec_tmp(istate,istate) = 1.d0
|
|
enddo
|
|
integer :: n_it_max,i_it
|
|
n_it_max = 1
|
|
converged = .False.
|
|
i_it = 0
|
|
do while (.not.converged)
|
|
if(.not.pure_three_body_h_tc)then
|
|
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, n_it_max, converged, H_tc_s2_dagger_u_0_opt)
|
|
else
|
|
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, n_it_max, converged, H_tc_s2_dagger_u_0_with_pure_three_omp)
|
|
endif
|
|
i_it += 1
|
|
if(i_it .gt. 5) exit
|
|
enddo
|
|
do istate = 1, N_states
|
|
leigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
|
|
enddo
|
|
|
|
print*,'---------------------------------'
|
|
print*,'---------------------------------'
|
|
print*,'Computing the right-eigenvector '
|
|
print*,'---------------------------------'
|
|
print*,'---------------------------------'
|
|
!!!! Preparing the right-eigenvector
|
|
vec_tmp = 0.d0
|
|
do istate = 1, N_states
|
|
vec_tmp(1:N_det,istate) = psi_r_coef_bi_ortho(1:N_det,istate)
|
|
enddo
|
|
do istate = N_states+1, n_states_diag
|
|
vec_tmp(istate,istate) = 1.d0
|
|
enddo
|
|
converged = .False.
|
|
i_it = 0
|
|
do while (.not. converged)
|
|
if(.not.pure_three_body_h_tc)then
|
|
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, n_it_max, converged, H_tc_s2_u_0_opt)
|
|
else
|
|
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, n_it_max, converged, H_tc_s2_u_0_with_pure_three_omp)
|
|
endif
|
|
i_it += 1
|
|
if(i_it .gt. 5) exit
|
|
enddo
|
|
do istate = 1, N_states
|
|
reigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
|
|
enddo
|
|
|
|
deallocate(H_jj)
|
|
endif
|
|
|
|
call bi_normalize(leigvec_tc_bi_orth, reigvec_tc_bi_orth, size(reigvec_tc_bi_orth, 1), N_det, N_states)
|
|
! check bi-orthogonality
|
|
allocate(Stmp(N_states,N_states))
|
|
call dgemm( 'T', 'N', N_states, N_states, N_det, 1.d0 &
|
|
, leigvec_tc_bi_orth(1,1), size(leigvec_tc_bi_orth, 1), reigvec_tc_bi_orth(1,1), size(reigvec_tc_bi_orth, 1) &
|
|
, 0.d0, Stmp(1,1), size(Stmp, 1) )
|
|
print *, ' overlap matrix between states:'
|
|
do i = 1, N_states
|
|
write(*,'(1000(F16.10,X))') Stmp(i,:)
|
|
enddo
|
|
deallocate(Stmp)
|
|
|
|
print*,'leigvec_tc_bi_orth(1,1),reigvec_tc_bi_orth(1,1) = ', leigvec_tc_bi_orth(1,1), reigvec_tc_bi_orth(1,1)
|
|
norm_ground_left_right_bi_orth = 0.d0
|
|
do i = 1, N_states
|
|
do j = 1, N_det
|
|
norm_ground_left_right_bi_orth(i) += leigvec_tc_bi_orth(j,i) * reigvec_tc_bi_orth(j,i)
|
|
enddo
|
|
print*,' state ', i
|
|
print*,' norm l/r = ', norm_ground_left_right_bi_orth(i)
|
|
print*,' <S2> = ', s2_eigvec_tc_bi_orth(i)
|
|
enddo
|
|
|
|
double precision, allocatable :: buffer(:,:)
|
|
allocate(buffer(N_det,N_states))
|
|
do k = 1, N_states
|
|
do i = 1, N_det
|
|
psi_l_coef_bi_ortho(i,k) = leigvec_tc_bi_orth(i,k)
|
|
buffer(i,k) = leigvec_tc_bi_orth(i,k)
|
|
enddo
|
|
enddo
|
|
TOUCH psi_l_coef_bi_ortho
|
|
call ezfio_set_tc_bi_ortho_psi_l_coef_bi_ortho(buffer)
|
|
do k = 1, N_states
|
|
do i = 1, N_det
|
|
psi_r_coef_bi_ortho(i,k) = reigvec_tc_bi_orth(i,k)
|
|
buffer(i,k) = reigvec_tc_bi_orth(i,k)
|
|
enddo
|
|
enddo
|
|
TOUCH psi_r_coef_bi_ortho
|
|
call ezfio_set_tc_bi_ortho_psi_r_coef_bi_ortho(buffer)
|
|
deallocate(buffer)
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
subroutine bi_normalize(u_l, u_r, n, ld, nstates)
|
|
|
|
BEGIN_DOC
|
|
!!!! Normalization of the scalar product of the left/right eigenvectors
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer, intent(in) :: n, ld, nstates
|
|
double precision, intent(inout) :: u_l(ld,nstates), u_r(ld,nstates)
|
|
integer :: i, j,j_loc
|
|
double precision :: accu, tmp, maxval_tmp
|
|
|
|
do i = 1, nstates
|
|
|
|
!!!! Normalization of right eigenvectors |Phi>
|
|
accu = 0.d0
|
|
! TODO: dot product lapack
|
|
maxval_tmp = 0.d0
|
|
do j = 1, n
|
|
accu += u_r(j,i) * u_r(j,i)
|
|
if(dabs(u_r(j,i)).gt.maxval_tmp)then
|
|
maxval_tmp = dabs(u_r(j,i))
|
|
j_loc = j
|
|
endif
|
|
enddo
|
|
accu = 1.d0/dsqrt(accu)
|
|
print*,'accu_r = ',accu
|
|
print*,'j_loc = ',j_loc
|
|
do j = 1, n
|
|
u_r(j,i) *= accu
|
|
enddo
|
|
tmp = u_r(j_loc,i) / dabs(u_r(j_loc,i))
|
|
do j = 1, n
|
|
u_r(j,i) *= tmp
|
|
enddo
|
|
|
|
!!!! Adaptation of the norm of the left eigenvector such that <chi|Phi> = 1
|
|
accu = 0.d0
|
|
do j = 1, n
|
|
accu += u_l(j,i) * u_r(j,i)
|
|
!print*,j, u_l(j,i) , u_r(j,i)
|
|
enddo
|
|
print*,'accu_lr = ', accu
|
|
if(accu.gt.0.d0)then
|
|
accu = 1.d0/dsqrt(accu)
|
|
else
|
|
accu = 1.d0/dsqrt(-accu)
|
|
endif
|
|
tmp = (u_l(j_loc,i) * u_r(j_loc,i) )/dabs(u_l(j_loc,i) * u_r(j_loc,i))
|
|
do j = 1, n
|
|
u_l(j,i) *= accu * tmp
|
|
u_r(j,i) *= accu
|
|
enddo
|
|
|
|
enddo
|
|
|
|
end
|
|
|