9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-10-11 10:21:31 +02:00
qp2/plugins/local/tc_bi_ortho/slater_tc_3e_slow.irp.f

283 lines
8.8 KiB
Fortran

! ---
subroutine diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree)
BEGIN_DOC
! diagonal element of htilde ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2)
double precision, intent(out) :: hthree
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2),i,j,ii,jj,ispin,jspin,m,mm
integer(bit_kind) :: key_i_core(Nint,2)
double precision :: direct_int, exchange_int, ref
double precision, external :: sym_3_e_int_from_6_idx_tensor
double precision, external :: three_e_diag_parrallel_spin
PROVIDE mo_l_coef mo_r_coef
if(core_tc_op) then
do i = 1, Nint
key_i_core(i,1) = xor(key_i(i,1), core_bitmask(i,1))
key_i_core(i,2) = xor(key_i(i,2), core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
else
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
endif
hthree = 0.d0
if((Ne(1)+Ne(2)) .ge. 3) then
! alpha/alpha/beta three-body
do i = 1, Ne(1)
ii = occ(i,1)
do j = i+1, Ne(1)
jj = occ(j,1)
do m = 1, Ne(2)
mm = occ(m,2)
!direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) !uses the 6-idx tensor
!exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) !uses the 6-idx tensor
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii) !uses 3-idx tensor
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii) !uses 3-idx tensor
hthree += direct_int - exchange_int
enddo
enddo
enddo
! beta/beta/alpha three-body
do i = 1, Ne(2)
ii = occ(i,2)
do j = i+1, Ne(2)
jj = occ(j,2)
do m = 1, Ne(1)
mm = occ(m,1)
!direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) !uses the 6-idx tensor
!exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) !uses the 6-idx tensor
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii)
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii)
hthree += direct_int - exchange_int
enddo
enddo
enddo
! alpha/alpha/alpha three-body
do i = 1, Ne(1)
ii = occ(i,1) ! 1
do j = i+1, Ne(1)
jj = occ(j,1) ! 2
do m = j+1, Ne(1)
mm = occ(m,1) ! 3
!hthree += sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) !uses the 6 idx tensor
hthree += three_e_diag_parrallel_spin(mm,jj,ii) !uses only 3-idx tensors
enddo
enddo
enddo
! beta/beta/beta three-body
do i = 1, Ne(2)
ii = occ(i,2) ! 1
do j = i+1, Ne(2)
jj = occ(j,2) ! 2
do m = j+1, Ne(2)
mm = occ(m,2) ! 3
!hthree += sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) !uses the 6 idx tensor
hthree += three_e_diag_parrallel_spin(mm,jj,ii) !uses only 3-idx tensors
enddo
enddo
enddo
endif
end
! ---
subroutine single_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
BEGIN_DOC
! <key_j |H_tilde | key_i> for single excitation ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
double precision, intent(out) :: hthree
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2),i,j,ii,jj,ispin,jspin,k,kk
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
double precision :: direct_int,phase,exchange_int,three_e_single_parrallel_spin
double precision :: sym_3_e_int_from_6_idx_tensor
integer :: other_spin(2)
integer(bit_kind) :: key_j_core(Nint,2),key_i_core(Nint,2)
other_spin(1) = 2
other_spin(2) = 1
hthree = 0.d0
call get_excitation_degree(key_i,key_j,degree,Nint)
if(degree.ne.1)then
return
endif
if(core_tc_op)then
do i = 1, Nint
key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
key_j_core(i,1) = xor(key_j(i,1),core_bitmask(i,1))
key_j_core(i,2) = xor(key_j(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
else
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
endif
call get_single_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 1, h1, p1, h2, p2, s1, s2)
! alpha/alpha/beta three-body
! print*,'IN SLAT RULES'
if(Ne(1)+Ne(2).ge.3)then
! hole of spin s1 :: contribution from purely other spin
ispin = other_spin(s1) ! ispin is the other spin than s1
do i = 1, Ne(ispin) ! i is the orbitals of the other spin than s1
ii = occ(i,ispin)
do j = i+1, Ne(ispin) ! j has the same spin than s1
jj = occ(j,ispin)
! is == ispin in ::: s1 is is s1 is is s1 is is s1 is is
! < h1 j i | p1 j i > - < h1 j i | p1 i j >
!
direct_int = three_e_4_idx_direct_bi_ort(jj,ii,p1,h1)
exchange_int = three_e_4_idx_exch23_bi_ort(jj,ii,p1,h1)
hthree += direct_int - exchange_int
enddo
enddo
! hole of spin s1 :: contribution from mixed other spin / same spin
do i = 1, Ne(ispin) ! other spin
ii = occ(i,ispin) ! other spin
do j = 1, Ne(s1) ! same spin
jj = occ(j,s1) ! same spin
direct_int = three_e_4_idx_direct_bi_ort(jj,ii,p1,h1)
exchange_int = three_e_4_idx_exch13_bi_ort(jj,ii,p1,h1)
! < h1 j i | p1 j i > - < h1 j i | j p1 i >
hthree += direct_int - exchange_int
enddo
enddo
!
! hole of spin s1 :: PURE SAME SPIN CONTRIBUTIONS !!!
do i = 1, Ne(s1)
ii = occ(i,s1)
do j = i+1, Ne(s1)
jj = occ(j,s1)
! !ref = sym_3_e_int_from_6_idx_tensor(jj,ii,p1,jj,ii,h1)
hthree += three_e_single_parrallel_spin(jj,ii,p1,h1) ! USES THE 4-IDX TENSOR
enddo
enddo
endif
hthree *= phase
end
! ---
subroutine double_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
BEGIN_DOC
! <key_j |H_tilde | key_i> for double excitation ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
double precision, intent(out) :: hthree
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2),i,j,ii,jj,ispin,jspin,m,mm
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
double precision :: phase
integer :: other_spin(2)
integer(bit_kind) :: key_i_core(Nint,2)
double precision :: direct_int,exchange_int,sym_3_e_int_from_6_idx_tensor
double precision :: three_e_double_parrallel_spin
other_spin(1) = 2
other_spin(2) = 1
call get_excitation_degree(key_i, key_j, degree, Nint)
hthree = 0.d0
if(degree.ne.2)then
return
endif
if(core_tc_op) then
do i = 1, Nint
key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
else
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
endif
call get_double_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
if(Ne(1)+Ne(2).ge.3)then
if(s1==s2)then ! same spin excitation
ispin = other_spin(s1)
do m = 1, Ne(ispin) ! direct(other_spin) - exchange(s1)
mm = occ(m,ispin)
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
! exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
exchange_int = three_e_5_idx_direct_bi_ort(mm,p2,h1,p1,h2)
hthree += direct_int - exchange_int
enddo
do m = 1, Ne(s1) ! pure contribution from s1
mm = occ(m,s1)
hthree += three_e_double_parrallel_spin(mm,p2,h2,p1,h1)
enddo
else ! different spin excitation
do m = 1, Ne(s1)
mm = occ(m,s1) !
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch13_bi_ort(mm,p2,h2,p1,h1)
hthree += direct_int - exchange_int
enddo
do m = 1, Ne(s2)
mm = occ(m,s2) !
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch23_bi_ort(mm,p2,h2,p1,h1)
hthree += direct_int - exchange_int
enddo
endif
endif
hthree *= phase
end
! ---