9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-03 09:05:39 +01:00
qp2/plugins/local/non_h_ints_mu/grad_squared.irp.f

487 lines
15 KiB
Fortran

! ---
! TODO : strong optmization : write the loops in a different way
! : for each couple of AO, the gaussian product are done once for all
BEGIN_PROVIDER [ double precision, gradu_squared_u_ij_mu, (ao_num, ao_num, n_points_final_grid) ]
BEGIN_DOC
!
! if J(r1,r2) = u12:
!
! gradu_squared_u_ij_mu = -0.50 x \int r2 [ (grad_1 u12)^2 + (grad_2 u12^2)] \phi_i(2) \phi_j(2)
! = -0.25 x \int r2 (1 - erf(mu*r12))^2 \phi_i(2) \phi_j(2)
! and
! (1 - erf(mu*r12))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * r12^2)
!
! if J(r1,r2) = u12 x v1 x v2
!
! gradu_squared_u_ij_mu = -0.50 x \int r2 \phi_i(2) \phi_j(2) [ v1^2 v2^2 ((grad_1 u12)^2 + (grad_2 u12^2)) + u12^2 v2^2 (grad_1 v1)^2 + 2 u12 v1 v2^2 (grad_1 u12) . (grad_1 v1) ]
! = -0.25 x v1^2 \int r2 \phi_i(2) \phi_j(2) [1 - erf(mu r12)]^2 v2^2
! + -0.50 x (grad_1 v1)^2 \int r2 \phi_i(2) \phi_j(2) u12^2 v2^2
! + -1.00 x v1 (grad_1 v1) \int r2 \phi_i(2) \phi_j(2) (grad_1 u12) v2^2
! = v1^2 x int2_grad1u2_grad2u2_j1b2
! + -0.5 x (grad_1 v1)^2 x int2_u2_j1b2
! + -1.0 X V1 x (grad_1 v1) \cdot [ int2_u_grad1u_j1b2 x r - int2_u_grad1u_x_j1b ]
!
!
END_DOC
implicit none
integer :: ipoint, i, j, m, igauss
double precision :: x, y, z, r(3), delta, coef
double precision :: tmp_v, tmp_x, tmp_y, tmp_z
double precision :: tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9
double precision :: time0, time1
double precision, external :: overlap_gauss_r12_ao
print*, ' providing gradu_squared_u_ij_mu ...'
call wall_time(time0)
PROVIDE j1b_type
if(j1b_type .eq. 3) then
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp_v = v_1b (ipoint)
tmp_x = v_1b_grad(1,ipoint)
tmp_y = v_1b_grad(2,ipoint)
tmp_z = v_1b_grad(3,ipoint)
tmp1 = tmp_v * tmp_v
tmp2 = -0.5d0 * (tmp_x * tmp_x + tmp_y * tmp_y + tmp_z * tmp_z)
tmp3 = tmp_v * tmp_x
tmp4 = tmp_v * tmp_y
tmp5 = tmp_v * tmp_z
tmp6 = -x * tmp3
tmp7 = -y * tmp4
tmp8 = -z * tmp5
do j = 1, ao_num
do i = 1, ao_num
tmp9 = int2_u_grad1u_j1b2(i,j,ipoint)
gradu_squared_u_ij_mu(i,j,ipoint) = tmp1 * int2_grad1u2_grad2u2_j1b2(i,j,ipoint) &
+ tmp2 * int2_u2_j1b2 (i,j,ipoint) &
+ tmp6 * tmp9 + tmp3 * int2_u_grad1u_x_j1b2(i,j,ipoint,1) &
+ tmp7 * tmp9 + tmp4 * int2_u_grad1u_x_j1b2(i,j,ipoint,2) &
+ tmp8 * tmp9 + tmp5 * int2_u_grad1u_x_j1b2(i,j,ipoint,3)
enddo
enddo
enddo
else
gradu_squared_u_ij_mu = 0.d0
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do j = 1, ao_num
do i = 1, ao_num
do igauss = 1, n_max_fit_slat
delta = expo_gauss_1_erf_x_2(igauss)
coef = coef_gauss_1_erf_x_2(igauss)
gradu_squared_u_ij_mu(i,j,ipoint) += -0.25d0 * coef * overlap_gauss_r12_ao(r, delta, i, j)
enddo
enddo
enddo
enddo
endif
call wall_time(time1)
print*, ' Wall time for gradu_squared_u_ij_mu = ', time1 - time0
END_PROVIDER
! ---
!BEGIN_PROVIDER [double precision, tc_grad_square_ao_loop, (ao_num, ao_num, ao_num, ao_num)]
!
! BEGIN_DOC
! !
! ! tc_grad_square_ao_loop(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_1 u(r1,r2)|^2 | ij>
! !
! END_DOC
!
! implicit none
! integer :: ipoint, i, j, k, l
! double precision :: weight1, ao_ik_r, ao_i_r
! double precision, allocatable :: ac_mat(:,:,:,:)
!
! allocate(ac_mat(ao_num,ao_num,ao_num,ao_num))
! ac_mat = 0.d0
!
! do ipoint = 1, n_points_final_grid
! weight1 = final_weight_at_r_vector(ipoint)
!
! do i = 1, ao_num
! ao_i_r = weight1 * aos_in_r_array_transp(ipoint,i)
!
! do k = 1, ao_num
! ao_ik_r = ao_i_r * aos_in_r_array_transp(ipoint,k)
!
! do j = 1, ao_num
! do l = 1, ao_num
! ac_mat(k,i,l,j) += ao_ik_r * gradu_squared_u_ij_mu(l,j,ipoint)
! enddo
! enddo
! enddo
! enddo
! enddo
!
! do j = 1, ao_num
! do l = 1, ao_num
! do i = 1, ao_num
! do k = 1, ao_num
! tc_grad_square_ao_loop(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
! !write(11,*) tc_grad_square_ao_loop(k,i,l,j)
! enddo
! enddo
! enddo
! enddo
!
! deallocate(ac_mat)
!
!END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, tc_grad_square_ao_loop, (ao_num, ao_num, ao_num, ao_num)]
BEGIN_DOC
!
! tc_grad_square_ao_loop(k,i,l,j) = 1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_2 u(r1,r2)|^2 | ij>
!
END_DOC
implicit none
integer :: ipoint, i, j, k, l
double precision :: weight1, ao_ik_r, ao_i_r
double precision :: time0, time1
double precision, allocatable :: ac_mat(:,:,:,:), bc_mat(:,:,:,:)
print*, ' providing tc_grad_square_ao_loop ...'
call wall_time(time0)
allocate(ac_mat(ao_num,ao_num,ao_num,ao_num))
ac_mat = 0.d0
allocate(bc_mat(ao_num,ao_num,ao_num,ao_num))
bc_mat = 0.d0
do ipoint = 1, n_points_final_grid
weight1 = final_weight_at_r_vector(ipoint)
do i = 1, ao_num
!ao_i_r = weight1 * aos_in_r_array_transp(ipoint,i)
ao_i_r = weight1 * aos_in_r_array(i,ipoint)
do k = 1, ao_num
!ao_ik_r = ao_i_r * aos_in_r_array_transp(ipoint,k)
ao_ik_r = ao_i_r * aos_in_r_array(k,ipoint)
do j = 1, ao_num
do l = 1, ao_num
ac_mat(k,i,l,j) += ao_ik_r * ( u12sq_j1bsq(l,j,ipoint) + u12_grad1_u12_j1b_grad1_j1b(l,j,ipoint) )
bc_mat(k,i,l,j) += ao_ik_r * grad12_j12(l,j,ipoint)
enddo
enddo
enddo
enddo
enddo
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
tc_grad_square_ao_loop(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i) + bc_mat(k,i,l,j)
enddo
enddo
enddo
enddo
deallocate(ac_mat)
deallocate(bc_mat)
call wall_time(time1)
print*, ' Wall time for tc_grad_square_ao_loop = ', time1 - time0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, grad12_j12, (ao_num, ao_num, n_points_final_grid) ]
implicit none
integer :: ipoint, i, j, m, igauss
double precision :: r(3), delta, coef
double precision :: tmp1
double precision :: time0, time1
double precision, external :: overlap_gauss_r12_ao
print*, ' providing grad12_j12 ...'
call wall_time(time0)
PROVIDE j1b_type
PROVIDE int2_grad1u2_grad2u2_j1b2
do ipoint = 1, n_points_final_grid
tmp1 = v_1b(ipoint)
tmp1 = tmp1 * tmp1
do j = 1, ao_num
do i = 1, ao_num
grad12_j12(i,j,ipoint) = tmp1 * int2_grad1u2_grad2u2_j1b2(i,j,ipoint)
enddo
enddo
enddo
FREE int2_grad1u2_grad2u2_j1b2
!if(j1b_type .eq. 0) then
! grad12_j12 = 0.d0
! do ipoint = 1, n_points_final_grid
! r(1) = final_grid_points(1,ipoint)
! r(2) = final_grid_points(2,ipoint)
! r(3) = final_grid_points(3,ipoint)
! do j = 1, ao_num
! do i = 1, ao_num
! do igauss = 1, n_max_fit_slat
! delta = expo_gauss_1_erf_x_2(igauss)
! coef = coef_gauss_1_erf_x_2(igauss)
! grad12_j12(i,j,ipoint) += -0.25d0 * coef * overlap_gauss_r12_ao(r, delta, i, j)
! enddo
! enddo
! enddo
! enddo
!endif
call wall_time(time1)
print*, ' Wall time for grad12_j12 = ', time1 - time0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, u12sq_j1bsq, (ao_num, ao_num, n_points_final_grid)]
implicit none
integer :: ipoint, i, j
double precision :: tmp_x, tmp_y, tmp_z
double precision :: tmp1
double precision :: time0, time1
print*, ' providing u12sq_j1bsq ...'
call wall_time(time0)
! do not free here
PROVIDE int2_u2_j1b2
do ipoint = 1, n_points_final_grid
tmp_x = v_1b_grad(1,ipoint)
tmp_y = v_1b_grad(2,ipoint)
tmp_z = v_1b_grad(3,ipoint)
tmp1 = -0.5d0 * (tmp_x * tmp_x + tmp_y * tmp_y + tmp_z * tmp_z)
do j = 1, ao_num
do i = 1, ao_num
u12sq_j1bsq(i,j,ipoint) = tmp1 * int2_u2_j1b2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(time1)
print*, ' Wall time for u12sq_j1bsq = ', time1 - time0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b, (ao_num, ao_num, n_points_final_grid) ]
implicit none
integer :: ipoint, i, j, m, igauss
double precision :: x, y, z
double precision :: tmp_v, tmp_x, tmp_y, tmp_z
double precision :: tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9
double precision :: time0, time1
double precision, external :: overlap_gauss_r12_ao
print*, ' providing u12_grad1_u12_j1b_grad1_j1b ...'
call wall_time(time0)
PROVIDE int2_u_grad1u_j1b2
PROVIDE int2_u_grad1u_x_j1b2
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp_v = v_1b (ipoint)
tmp_x = v_1b_grad(1,ipoint)
tmp_y = v_1b_grad(2,ipoint)
tmp_z = v_1b_grad(3,ipoint)
tmp3 = tmp_v * tmp_x
tmp4 = tmp_v * tmp_y
tmp5 = tmp_v * tmp_z
tmp6 = -x * tmp3
tmp7 = -y * tmp4
tmp8 = -z * tmp5
do j = 1, ao_num
do i = 1, ao_num
tmp9 = int2_u_grad1u_j1b2(i,j,ipoint)
u12_grad1_u12_j1b_grad1_j1b(i,j,ipoint) = tmp6 * tmp9 + tmp3 * int2_u_grad1u_x_j1b2(i,j,ipoint,1) &
+ tmp7 * tmp9 + tmp4 * int2_u_grad1u_x_j1b2(i,j,ipoint,2) &
+ tmp8 * tmp9 + tmp5 * int2_u_grad1u_x_j1b2(i,j,ipoint,3)
enddo
enddo
enddo
FREE int2_u_grad1u_j1b2
FREE int2_u_grad1u_x_j1b2
call wall_time(time1)
print*, ' Wall time for u12_grad1_u12_j1b_grad1_j1b = ', time1 - time0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao_num)]
BEGIN_DOC
!
! tc_grad_square_ao(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_2 u(r1,r2)|^2 | ij>
!
END_DOC
implicit none
integer :: ipoint, i, j, k, l
double precision :: weight1, ao_k_r, ao_i_r
double precision :: der_envsq_x, der_envsq_y, der_envsq_z, lap_envsq
double precision :: time0, time1
double precision, allocatable :: b_mat(:,:,:), tmp(:,:,:)
print*, ' providing tc_grad_square_ao ...'
call wall_time(time0)
if(read_tc_integ) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/tc_grad_square_ao', action="read")
read(11) tc_grad_square_ao
close(11)
else
! ---
PROVIDE int2_grad1_u12_square_ao
allocate(b_mat(n_points_final_grid,ao_num,ao_num))
b_mat = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (aos_in_r_array_transp, b_mat, ao_num, n_points_final_grid, final_weight_at_r_vector)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
b_mat(ipoint,k,i) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,k)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
tc_grad_square_ao = 0.d0
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_grad1_u12_square_ao(1,1,1), ao_num*ao_num, b_mat(1,1,1), n_points_final_grid &
, 0.d0, tc_grad_square_ao, ao_num*ao_num)
FREE int2_grad1_u12_square_ao
! ---
if(((j1b_type .eq. 3) .or. (j1b_type .eq. 4)) .and. use_ipp) then
print*, " going through Manu's IPP"
! an additional term is added here directly instead of
! being added in int2_grad1_u12_square_ao for performance
PROVIDE int2_u2_j1b2
b_mat = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
!$OMP SHARED (aos_in_r_array_transp, b_mat, ao_num, n_points_final_grid, final_weight_at_r_vector, &
!$OMP v_1b_square_grad, v_1b_square_lapl, aos_grad_in_r_array_transp_bis)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
weight1 = 0.25d0 * final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k)
b_mat(ipoint,k,i) = weight1 * ( ao_k_r * ao_i_r * v_1b_square_lapl(ipoint) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,1) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,1)) * v_1b_square_grad(ipoint,1) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,2) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,2)) * v_1b_square_grad(ipoint,2) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,3) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,3)) * v_1b_square_grad(ipoint,3) )
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_u2_j1b2(1,1,1), ao_num*ao_num, b_mat(1,1,1), n_points_final_grid &
, 1.d0, tc_grad_square_ao, ao_num*ao_num)
FREE int2_u2_j1b2
endif
! ---
deallocate(b_mat)
call sum_A_At(tc_grad_square_ao(1,1,1,1), ao_num*ao_num)
endif
if(write_tc_integ.and.mpi_master) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/tc_grad_square_ao', action="write")
call ezfio_set_work_empty(.False.)
write(11) tc_grad_square_ao
close(11)
call ezfio_set_tc_keywords_io_tc_integ('Read')
endif
call wall_time(time1)
print*, ' Wall time for tc_grad_square_ao = ', time1 - time0
call print_memory_usage()
END_PROVIDER
! ---