mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-10-11 02:11:30 +02:00
87 lines
3.5 KiB
Fortran
87 lines
3.5 KiB
Fortran
|
|
|
|
BEGIN_PROVIDER[double precision, energy_x_LDA, (N_states) ]
|
|
&BEGIN_PROVIDER[double precision, energy_c_LDA, (N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! exchange/correlation energy with the short range LDA functional
|
|
END_DOC
|
|
integer :: istate,i,j
|
|
double precision :: r(3)
|
|
double precision :: mu,weight
|
|
double precision :: e_c,vc_a,vc_b,e_x,vx_a,vx_b
|
|
double precision, allocatable :: rhoa(:),rhob(:)
|
|
allocate(rhoa(N_states), rhob(N_states))
|
|
energy_x_LDA = 0.d0
|
|
energy_c_LDA = 0.d0
|
|
do istate = 1, N_states
|
|
do i = 1, n_points_final_grid
|
|
r(1) = final_grid_points(1,i)
|
|
r(2) = final_grid_points(2,i)
|
|
r(3) = final_grid_points(3,i)
|
|
weight = final_weight_at_r_vector(i)
|
|
rhoa(istate) = one_e_dm_alpha_at_r(i,istate)
|
|
rhob(istate) = one_e_dm_beta_at_r(i,istate)
|
|
call ec_LDA(rhoa(istate),rhob(istate),e_c,vc_a,vc_b)
|
|
call ex_LDA(rhoa(istate),rhob(istate),e_x,vx_a,vx_b)
|
|
energy_x_LDA(istate) += weight * e_x
|
|
energy_c_LDA(istate) += weight * e_c
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER[double precision, energy_x_PBE, (N_states) ]
|
|
&BEGIN_PROVIDER[double precision, energy_c_PBE, (N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! exchange/correlation energy with the short range PBE functional
|
|
END_DOC
|
|
integer :: istate,i,j,m
|
|
double precision :: r(3)
|
|
double precision :: mu,weight
|
|
double precision, allocatable :: ex(:), ec(:)
|
|
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
|
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
|
|
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
|
|
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
|
|
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
|
|
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
|
|
|
|
|
|
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
|
|
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
|
|
energy_x_PBE = 0.d0
|
|
energy_c_PBE = 0.d0
|
|
do istate = 1, N_states
|
|
do i = 1, n_points_final_grid
|
|
r(1) = final_grid_points(1,i)
|
|
r(2) = final_grid_points(2,i)
|
|
r(3) = final_grid_points(3,i)
|
|
weight = final_weight_at_r_vector(i)
|
|
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
|
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
|
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
|
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
|
grad_rho_a_2 = 0.d0
|
|
grad_rho_b_2 = 0.d0
|
|
grad_rho_a_b = 0.d0
|
|
do m = 1, 3
|
|
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
|
|
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
|
|
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
|
|
enddo
|
|
|
|
! inputs
|
|
call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
|
energy_x_PBE += ex * weight
|
|
energy_c_PBE += ec * weight
|
|
enddo
|
|
enddo
|
|
|
|
|
|
END_PROVIDER
|
|
|