9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-10-04 15:15:58 +02:00
qp2/src/determinants/mo_energy_expval.irp.broken
2019-01-25 11:39:31 +01:00

161 lines
5.1 KiB
Plaintext

BEGIN_PROVIDER [ double precision, mo_energy_expval, (N_states,mo_num,2,2)]
use bitmasks
implicit none
BEGIN_DOC
! Third index is spin.
! Fourth index is 1:creation, 2:annihilation
END_DOC
integer :: i,j,k
integer :: ispin, istate
integer :: hp
double precision :: norm_out(N_states)
integer, parameter :: hole_particle(2) = (/ -1, 1 /)
double precision :: energies(n_states)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
double precision :: E0(N_states), norm
double precision, parameter :: t=1.d-3
allocate (psi_in_out(N_int,2,N_det),psi_in_out_coef(N_det,N_states))
mo_energy_expval = 0.d0
psi_in_out_coef(1:N_det,1:N_states) = psi_coef(1:N_det,1:N_states)
psi_in_out(1:N_int,1:2,1:N_det) = psi_det(1:N_int,1:2,1:N_det)
! Truncate the wave function
do istate=1,N_states
norm = 0.d0
do k=1,N_det
if (dabs(psi_in_out_coef(k,istate)) < t) then
psi_in_out_coef(k,istate) = 0.d0
endif
norm = norm + psi_in_out_coef(k,istate)*psi_in_out_coef(k,istate)
enddo
ASSERT (norm > 0.d0)
norm = 1.d0/dsqrt(norm)
psi_in_out_coef(1:N_det,istate) = psi_in_out_coef(1:N_det,istate) * norm
call au0_h_au0(E0,psi_in_out,psi_in_out_coef,N_det,size(psi_in_out_coef,1))
enddo
do hp=1,2
do ispin=1,2
do i=1,mo_num
psi_in_out_coef(1:N_det,1:N_states) = psi_coef(1:N_det,1:N_states)
psi_in_out(1:N_int,1:2,1:N_det) = psi_det(1:N_int,1:2,1:N_det)
call apply_exc_to_psi(i,hole_particle(hp),ispin, &
norm_out,psi_in_out,psi_in_out_coef, N_det,N_det,N_det,N_states)
! Truncate the wave function
do istate=1,N_states
norm = 0.d0
do k=1,N_det
if (dabs(psi_in_out_coef(k,istate)) < t) then
psi_in_out_coef(k,istate) = 0.d0
endif
norm = norm + psi_in_out_coef(k,istate)*psi_in_out_coef(k,istate)
enddo
if (norm == 0.d0) then
cycle
endif
norm = 1.d0/dsqrt(norm)
psi_in_out_coef(1:N_det,istate) = psi_in_out_coef(1:N_det,istate) * norm
enddo
call au0_h_au0(energies,psi_in_out,psi_in_out_coef,N_det,size(psi_in_out_coef,1))
mo_energy_expval(1:N_states,i,ispin,hp) = energies(1:N_states) - E0(1:N_states)
print *, i, ispin, real(energies(1)), real(E0(1))
enddo
enddo
enddo
mo_energy_expval(1:N_states,1:mo_num,1:2,1) = -mo_energy_expval(1:N_states,1:mo_num,1:2,1)
END_PROVIDER
subroutine au0_h_au0(energies,psi_in,psi_in_coef,ndet,dim_psi_coef)
use bitmasks
implicit none
integer, intent(in) :: ndet,dim_psi_coef
integer(bit_kind), intent(in) :: psi_in(N_int,2,Ndet)
double precision, intent(in) :: psi_in_coef(dim_psi_coef,N_states)
double precision, intent(out) :: energies(N_states)
integer :: i,j, istate
double precision :: hij,accu
double precision, allocatable :: psi_coef_tmp(:)
energies(1:N_states) = 0.d0
do i = 1, Ndet
if(sum(dabs(psi_in_coef(i,1:N_states)))==0.d0) then
cycle
endif
call diag_H_mat_elem_au0_h_au0(psi_in(1,1,i),N_int,hij)
do istate=1,N_states
energies(istate) += psi_in_coef(i,istate) * psi_in_coef(i,istate) * hij
enddo
do j = i+1, Ndet
if(sum(dabs(psi_in_coef(j,1:N_states)))==0.d0) then
cycle
endif
call i_H_j(psi_in(1,1,i),psi_in(1,1,j),N_int,hij)
hij = hij+hij
do istate=1,N_states
energies(istate) = energies(istate) + psi_in_coef(i,istate) * psi_in_coef(j,istate) * hij
enddo
enddo
enddo
end
subroutine diag_H_mat_elem_au0_h_au0(det_in,Nint,hii)
use bitmasks
implicit none
BEGIN_DOC
! Computes $\langle i|H|i \rangle$ for any determinant $|i\rangle$.
! Used for wave functions with an additional electron.
END_DOC
integer,intent(in) :: Nint
integer(bit_kind),intent(in) :: det_in(Nint,2)
double precision, intent(out) :: hii
integer :: i, j, iorb, jorb
integer :: occ(Nint*bit_kind_size,2)
integer :: elec_num_tab_local(2)
hii = 0.d0
call bitstring_to_list(det_in(1,1), occ(1,1), elec_num_tab_local(1), Nint)
call bitstring_to_list(det_in(1,2), occ(1,2), elec_num_tab_local(2), Nint)
! alpha - alpha
do i = 1, elec_num_tab_local(1)
iorb = occ(i,1)
hii += mo_one_e_integrals(iorb,iorb)
do j = i+1, elec_num_tab_local(1)
jorb = occ(j,1)
hii += mo_two_e_integrals_jj_anti(jorb,iorb)
enddo
enddo
! beta - beta
do i = 1, elec_num_tab_local(2)
iorb = occ(i,2)
hii += mo_one_e_integrals(iorb,iorb)
do j = i+1, elec_num_tab_local(2)
jorb = occ(j,2)
hii += mo_two_e_integrals_jj_anti(jorb,iorb)
enddo
enddo
! alpha - beta
do i = 1, elec_num_tab_local(2)
iorb = occ(i,2)
do j = 1, elec_num_tab_local(1)
jorb = occ(j,1)
hii += mo_two_e_integrals_jj(jorb,iorb)
enddo
enddo
end