9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-10-04 23:25:57 +02:00
qp2/src/determinants/density_matrix.irp.f
2019-01-25 11:39:31 +01:00

406 lines
12 KiB
Fortran

BEGIN_PROVIDER [ double precision, one_e_dm_mo_alpha_average, (mo_num,mo_num) ]
&BEGIN_PROVIDER [ double precision, one_e_dm_mo_beta_average, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! $\alpha$ and $\beta$ one-body density matrix for each state
END_DOC
integer :: i
one_e_dm_mo_alpha_average = 0.d0
one_e_dm_mo_beta_average = 0.d0
do i = 1,N_states
one_e_dm_mo_alpha_average(:,:) += one_e_dm_mo_alpha(:,:,i) * state_average_weight(i)
one_e_dm_mo_beta_average(:,:) += one_e_dm_mo_beta(:,:,i) * state_average_weight(i)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_e_dm_mo_diff, (mo_num,mo_num,2:N_states) ]
implicit none
BEGIN_DOC
! Difference of the one-body density matrix with respect to the ground state
END_DOC
integer :: i,j, istate
do istate=2,N_states
do j=1,mo_num
do i=1,mo_num
one_e_dm_mo_diff(i,j,istate) = &
one_e_dm_mo_alpha(i,j,istate) - one_e_dm_mo_alpha(i,j,1) +&
one_e_dm_mo_beta (i,j,istate) - one_e_dm_mo_beta (i,j,1)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_e_dm_mo_spin_index, (mo_num,mo_num,N_states,2) ]
implicit none
integer :: i,j,ispin,istate
ispin = 1
do istate = 1, N_states
do j = 1, mo_num
do i = 1, mo_num
one_e_dm_mo_spin_index(i,j,istate,ispin) = one_e_dm_mo_alpha(i,j,istate)
enddo
enddo
enddo
ispin = 2
do istate = 1, N_states
do j = 1, mo_num
do i = 1, mo_num
one_e_dm_mo_spin_index(i,j,istate,ispin) = one_e_dm_mo_beta(i,j,istate)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_e_dm_dagger_mo_spin_index, (mo_num,mo_num,N_states,2) ]
implicit none
integer :: i,j,ispin,istate
ispin = 1
do istate = 1, N_states
do j = 1, mo_num
one_e_dm_dagger_mo_spin_index(j,j,istate,ispin) = 1 - one_e_dm_mo_alpha(j,j,istate)
do i = j+1, mo_num
one_e_dm_dagger_mo_spin_index(i,j,istate,ispin) = -one_e_dm_mo_alpha(i,j,istate)
one_e_dm_dagger_mo_spin_index(j,i,istate,ispin) = -one_e_dm_mo_alpha(i,j,istate)
enddo
enddo
enddo
ispin = 2
do istate = 1, N_states
do j = 1, mo_num
one_e_dm_dagger_mo_spin_index(j,j,istate,ispin) = 1 - one_e_dm_mo_beta(j,j,istate)
do i = j+1, mo_num
one_e_dm_dagger_mo_spin_index(i,j,istate,ispin) = -one_e_dm_mo_beta(i,j,istate)
one_e_dm_dagger_mo_spin_index(j,i,istate,ispin) = -one_e_dm_mo_beta(i,j,istate)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_e_dm_mo_alpha, (mo_num,mo_num,N_states) ]
&BEGIN_PROVIDER [ double precision, one_e_dm_mo_beta, (mo_num,mo_num,N_states) ]
implicit none
BEGIN_DOC
! $\alpha$ and $\beta$ one-body density matrix for each state
END_DOC
integer :: j,k,l,m,k_a,k_b
integer :: occ(N_int*bit_kind_size,2)
double precision :: ck, cl, ckl
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2, degree
integer(bit_kind) :: tmp_det(N_int,2), tmp_det2(N_int)
integer :: exc(0:2,2),n_occ(2)
double precision, allocatable :: tmp_a(:,:,:), tmp_b(:,:,:)
integer :: krow, kcol, lrow, lcol
PROVIDE psi_det
one_e_dm_mo_alpha = 0.d0
one_e_dm_mo_beta = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,k_a,k_b,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc,&
!$OMP tmp_a, tmp_b, n_occ, krow, kcol, lrow, lcol, tmp_det, tmp_det2)&
!$OMP SHARED(psi_det,psi_coef,N_int,N_states,elec_alpha_num, &
!$OMP elec_beta_num,one_e_dm_mo_alpha,one_e_dm_mo_beta,N_det,&
!$OMP mo_num,psi_bilinear_matrix_rows,psi_bilinear_matrix_columns,&
!$OMP psi_bilinear_matrix_transp_rows, psi_bilinear_matrix_transp_columns,&
!$OMP psi_bilinear_matrix_order_reverse, psi_det_alpha_unique, psi_det_beta_unique,&
!$OMP psi_bilinear_matrix_values, psi_bilinear_matrix_transp_values,&
!$OMP N_det_alpha_unique,N_det_beta_unique,irp_here)
allocate(tmp_a(mo_num,mo_num,N_states), tmp_b(mo_num,mo_num,N_states) )
tmp_a = 0.d0
!$OMP DO SCHEDULE(dynamic,64)
do k_a=1,N_det
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol)
! Diagonal part
! -------------
call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int)
do m=1,N_states
ck = psi_bilinear_matrix_values(k_a,m)*psi_bilinear_matrix_values(k_a,m)
do l=1,elec_alpha_num
j = occ(l,1)
tmp_a(j,j,m) += ck
enddo
enddo
if (k_a == N_det) cycle
l = k_a+1
lrow = psi_bilinear_matrix_rows(l)
lcol = psi_bilinear_matrix_columns(l)
! Fix beta determinant, loop over alphas
do while ( lcol == kcol )
tmp_det2(:) = psi_det_alpha_unique(:, lrow)
call get_excitation_degree_spin(tmp_det(1,1),tmp_det2,degree,N_int)
if (degree == 1) then
exc = 0
call get_mono_excitation_spin(tmp_det(1,1),tmp_det2,exc,phase,N_int)
call decode_exc_spin(exc,h1,p1,h2,p2)
do m=1,N_states
ckl = psi_bilinear_matrix_values(k_a,m)*psi_bilinear_matrix_values(l,m) * phase
tmp_a(h1,p1,m) += ckl
tmp_a(p1,h1,m) += ckl
enddo
endif
l = l+1
if (l>N_det) exit
lrow = psi_bilinear_matrix_rows(l)
lcol = psi_bilinear_matrix_columns(l)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
one_e_dm_mo_alpha(:,:,:) = one_e_dm_mo_alpha(:,:,:) + tmp_a(:,:,:)
!$OMP END CRITICAL
deallocate(tmp_a)
tmp_b = 0.d0
!$OMP DO SCHEDULE(dynamic,64)
do k_b=1,N_det
krow = psi_bilinear_matrix_transp_rows(k_b)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_transp_columns(k_b)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol)
! Diagonal part
! -------------
call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int)
do m=1,N_states
ck = psi_bilinear_matrix_transp_values(k_b,m)*psi_bilinear_matrix_transp_values(k_b,m)
do l=1,elec_beta_num
j = occ(l,2)
tmp_b(j,j,m) += ck
enddo
enddo
if (k_b == N_det) cycle
l = k_b+1
lrow = psi_bilinear_matrix_transp_rows(l)
lcol = psi_bilinear_matrix_transp_columns(l)
! Fix beta determinant, loop over alphas
do while ( lrow == krow )
tmp_det2(:) = psi_det_beta_unique(:, lcol)
call get_excitation_degree_spin(tmp_det(1,2),tmp_det2,degree,N_int)
if (degree == 1) then
exc = 0
call get_mono_excitation_spin(tmp_det(1,2),tmp_det2,exc,phase,N_int)
call decode_exc_spin(exc,h1,p1,h2,p2)
do m=1,N_states
ckl = psi_bilinear_matrix_transp_values(k_b,m)*psi_bilinear_matrix_transp_values(l,m) * phase
tmp_b(h1,p1,m) += ckl
tmp_b(p1,h1,m) += ckl
enddo
endif
l = l+1
if (l>N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l)
lcol = psi_bilinear_matrix_transp_columns(l)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
one_e_dm_mo_beta(:,:,:) = one_e_dm_mo_beta(:,:,:) + tmp_b(:,:,:)
!$OMP END CRITICAL
deallocate(tmp_b)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_e_dm_mo, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! One-body density matrix
END_DOC
one_e_dm_mo = one_e_dm_mo_alpha_average + one_e_dm_mo_beta_average
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_e_spin_density_mo, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! $\rho(\alpha) - \rho(\beta)$
END_DOC
one_e_spin_density_mo = one_e_dm_mo_alpha_average - one_e_dm_mo_beta_average
END_PROVIDER
subroutine set_natural_mos
implicit none
BEGIN_DOC
! Set natural orbitals, obtained by diagonalization of the one-body density matrix
! in the |MO| basis
END_DOC
character*(64) :: label
double precision, allocatable :: tmp(:,:)
label = "Natural"
call mo_as_svd_vectors_of_mo_matrix_eig(one_e_dm_mo,size(one_e_dm_mo,1),mo_num,mo_num,mo_occ,label)
soft_touch mo_occ
end
subroutine save_natural_mos
implicit none
BEGIN_DOC
! Save natural orbitals, obtained by diagonalization of the one-body density matrix in
! the |MO| basis
END_DOC
call set_natural_mos
call save_mos
end
BEGIN_PROVIDER [ double precision, c0_weight, (N_states) ]
implicit none
BEGIN_DOC
! Weight of the states in the selection : $\frac{1}{c_0^2}$.
END_DOC
if (N_states > 1) then
integer :: i
double precision :: c
do i=1,N_states
c0_weight(i) = 1.d-31
c = maxval(psi_coef(:,i) * psi_coef(:,i))
c0_weight(i) = 1.d0/(c+1.d-20)
enddo
c = 1.d0/minval(c0_weight(:))
do i=1,N_states
c0_weight(i) = c0_weight(i) * c
enddo
else
c0_weight = 1.d0
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, state_average_weight, (N_states) ]
implicit none
BEGIN_DOC
! Weights in the state-average calculation of the density matrix
END_DOC
logical :: exists
state_average_weight(:) = 1.d0
if (used_weight == 0) then
state_average_weight(:) = c0_weight(:)
else if (used_weight == 1) then
state_average_weight(:) = 1./N_states
else
call ezfio_has_determinants_state_average_weight(exists)
if (exists) then
call ezfio_get_determinants_state_average_weight(state_average_weight)
endif
endif
state_average_weight(:) = state_average_weight(:)+1.d-31
state_average_weight(:) = state_average_weight(:)/(sum(state_average_weight(:)))
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_e_spin_density_ao, (ao_num,ao_num) ]
BEGIN_DOC
! One body spin density matrix on the |AO| basis : $\rho_{AO}(\alpha) - \rho_{AO}(\beta)$
END_DOC
implicit none
integer :: i,j,k,l
double precision :: dm_mo
one_e_spin_density_ao = 0.d0
do k = 1, ao_num
do l = 1, ao_num
do i = 1, mo_num
do j = 1, mo_num
dm_mo = one_e_spin_density_mo(j,i)
! if(dabs(dm_mo).le.1.d-10)cycle
one_e_spin_density_ao(l,k) += mo_coef(k,i) * mo_coef(l,j) * dm_mo
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_e_dm_ao_alpha, (ao_num,ao_num) ]
&BEGIN_PROVIDER [ double precision, one_e_dm_ao_beta, (ao_num,ao_num) ]
BEGIN_DOC
! One body density matrix on the |AO| basis : $\rho_{AO}(\alpha), \rho_{AO}(\beta)$.
END_DOC
implicit none
integer :: i,j,k,l
double precision :: mo_alpha,mo_beta
one_e_dm_ao_alpha = 0.d0
one_e_dm_ao_beta = 0.d0
do k = 1, ao_num
do l = 1, ao_num
do i = 1, mo_num
do j = 1, mo_num
mo_alpha = one_e_dm_mo_alpha_average(j,i)
mo_beta = one_e_dm_mo_beta_average(j,i)
! if(dabs(dm_mo).le.1.d-10)cycle
one_e_dm_ao_alpha(l,k) += mo_coef(k,i) * mo_coef(l,j) * mo_alpha
one_e_dm_ao_beta(l,k) += mo_coef(k,i) * mo_coef(l,j) * mo_beta
enddo
enddo
enddo
enddo
END_PROVIDER
subroutine get_occupation_from_dets(istate,occupation)
implicit none
double precision, intent(out) :: occupation(mo_num)
integer, intent(in) :: istate
BEGIN_DOC
! Returns the average occupation of the MOs
END_DOC
integer :: i,j, ispin
integer :: list(N_int*bit_kind_size,2)
integer :: n_elements(2)
double precision :: c, norm_2
ASSERT (istate > 0)
ASSERT (istate <= N_states)
occupation = 0.d0
double precision, external :: u_dot_u
norm_2 = 1.d0/u_dot_u(psi_coef(1,istate),N_det)
do i=1,N_det
c = psi_coef(i,istate)*psi_coef(i,istate)*norm_2
call bitstring_to_list_ab(psi_det(1,1,i), list, n_elements, N_int)
do ispin=1,2
do j=1,n_elements(ispin)
ASSERT ( list(j,ispin) < mo_num )
occupation( list(j,ispin) ) += c
enddo
enddo
enddo
end