mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-26 21:33:30 +01:00
49e9488f62
* fixed laplacian of aos * corrected the laplacians of aos * added dft_one_e * added new feature for new dft functionals * changed the configure to add new functionals * changed the configure * added dft_one_e/README.rst * added README.rst in new_functionals * added source/programmers_guide/new_ks.rst * Thesis Yann * Added gmp installation in configure * improved qp_e_conv_fci * Doc * Typos * Added variance_max * Fixed completion in qp_create * modif TODO * fixed DFT potential for n_states gt 1 * improved pot pbe * trying to improve sr PBE * fixed potential pbe * fixed the vxc smashed for pbe sr and normal * Comments in selection * bug fixed by peter * Fixed bug with zero beta electrons * Update README.rst * Update e_xc_new_func.irp.f * Update links.rst * Update quickstart.rst * Update quickstart.rst * updated cipsi * Fixed energies of non-expected s2 (#9) * Moved diag_algorithm in Davdison
243 lines
8.8 KiB
Fortran
243 lines
8.8 KiB
Fortran
BEGIN_PROVIDER [ double precision, ao_two_e_integral_alpha, (ao_num, ao_num) ]
|
|
&BEGIN_PROVIDER [ double precision, ao_two_e_integral_beta , (ao_num, ao_num) ]
|
|
use map_module
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Alpha Fock matrix in ao basis set
|
|
END_DOC
|
|
|
|
integer :: i,j,k,l,k1,r,s
|
|
integer :: i0,j0,k0,l0
|
|
integer*8 :: p,q
|
|
double precision :: integral, c0, c1, c2
|
|
double precision :: ao_two_e_integral, local_threshold
|
|
double precision, allocatable :: ao_two_e_integral_alpha_tmp(:,:)
|
|
double precision, allocatable :: ao_two_e_integral_beta_tmp(:,:)
|
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: ao_two_e_integral_beta_tmp
|
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: ao_two_e_integral_alpha_tmp
|
|
|
|
ao_two_e_integral_alpha = 0.d0
|
|
ao_two_e_integral_beta = 0.d0
|
|
if (do_direct_integrals) then
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,p,q,r,s,i0,j0,k0,l0, &
|
|
!$OMP ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, c0, c1, c2, &
|
|
!$OMP local_threshold)&
|
|
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
|
|
!$OMP ao_integrals_map,ao_integrals_threshold, ao_two_e_integral_schwartz, &
|
|
!$OMP ao_overlap_abs, ao_two_e_integral_alpha, ao_two_e_integral_beta)
|
|
|
|
allocate(keys(1), values(1))
|
|
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
|
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
|
ao_two_e_integral_alpha_tmp = 0.d0
|
|
ao_two_e_integral_beta_tmp = 0.d0
|
|
|
|
q = ao_num*ao_num*ao_num*ao_num
|
|
!$OMP DO SCHEDULE(dynamic)
|
|
do p=1_8,q
|
|
call two_e_integrals_index_reverse(kk,ii,ll,jj,p)
|
|
if ( (kk(1)>ao_num).or. &
|
|
(ii(1)>ao_num).or. &
|
|
(jj(1)>ao_num).or. &
|
|
(ll(1)>ao_num) ) then
|
|
cycle
|
|
endif
|
|
k = kk(1)
|
|
i = ii(1)
|
|
l = ll(1)
|
|
j = jj(1)
|
|
|
|
if (ao_overlap_abs(k,l)*ao_overlap_abs(i,j) &
|
|
< ao_integrals_threshold) then
|
|
cycle
|
|
endif
|
|
local_threshold = ao_two_e_integral_schwartz(k,l)*ao_two_e_integral_schwartz(i,j)
|
|
if (local_threshold < ao_integrals_threshold) then
|
|
cycle
|
|
endif
|
|
i0 = i
|
|
j0 = j
|
|
k0 = k
|
|
l0 = l
|
|
values(1) = 0.d0
|
|
local_threshold = ao_integrals_threshold/local_threshold
|
|
do k2=1,8
|
|
if (kk(k2)==0) then
|
|
cycle
|
|
endif
|
|
i = ii(k2)
|
|
j = jj(k2)
|
|
k = kk(k2)
|
|
l = ll(k2)
|
|
c0 = SCF_density_matrix_ao_alpha(k,l)+SCF_density_matrix_ao_beta(k,l)
|
|
c1 = SCF_density_matrix_ao_alpha(k,i)
|
|
c2 = SCF_density_matrix_ao_beta(k,i)
|
|
if ( dabs(c0)+dabs(c1)+dabs(c2) < local_threshold) then
|
|
cycle
|
|
endif
|
|
if (values(1) == 0.d0) then
|
|
values(1) = ao_two_e_integral(k0,l0,i0,j0)
|
|
endif
|
|
integral = c0 * values(1)
|
|
ao_two_e_integral_alpha_tmp(i,j) += integral
|
|
ao_two_e_integral_beta_tmp (i,j) += integral
|
|
integral = values(1)
|
|
ao_two_e_integral_alpha_tmp(l,j) -= c1 * integral
|
|
ao_two_e_integral_beta_tmp (l,j) -= c2 * integral
|
|
enddo
|
|
enddo
|
|
!$OMP END DO NOWAIT
|
|
!$OMP CRITICAL
|
|
ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp
|
|
!$OMP END CRITICAL
|
|
!$OMP CRITICAL
|
|
ao_two_e_integral_beta += ao_two_e_integral_beta_tmp
|
|
!$OMP END CRITICAL
|
|
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
|
|
!$OMP END PARALLEL
|
|
else
|
|
PROVIDE ao_two_e_integrals_in_map
|
|
PROVIDE ao_two_e_integrals_erf_in_map
|
|
|
|
integer(omp_lock_kind) :: lck(ao_num)
|
|
integer*8 :: i8
|
|
integer :: ii(8), jj(8), kk(8), ll(8), k2
|
|
integer(cache_map_size_kind) :: n_elements_max, n_elements
|
|
integer(key_kind), allocatable :: keys(:)
|
|
double precision, allocatable :: values(:)
|
|
integer(cache_map_size_kind) :: n_elements_max_erf, n_elements_erf
|
|
integer(key_kind), allocatable :: keys_erf(:)
|
|
double precision, allocatable :: values_erf(:)
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) if (ao_num > 100) &
|
|
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
|
|
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)&
|
|
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
|
|
!$OMP ao_integrals_map, ao_two_e_integral_alpha, ao_two_e_integral_beta)
|
|
|
|
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
|
|
allocate(keys(n_elements_max), values(n_elements_max))
|
|
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
|
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
|
ao_two_e_integral_alpha_tmp = 0.d0
|
|
ao_two_e_integral_beta_tmp = 0.d0
|
|
|
|
!$OMP DO SCHEDULE(static,1)
|
|
!DIR$ NOVECTOR
|
|
do i8=0_8,ao_integrals_map%map_size
|
|
n_elements = n_elements_max
|
|
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
|
|
do k1=1,n_elements
|
|
call two_e_integrals_index_reverse(kk,ii,ll,jj,keys(k1))
|
|
|
|
do k2=1,8
|
|
if (kk(k2)==0) then
|
|
cycle
|
|
endif
|
|
i = ii(k2)
|
|
j = jj(k2)
|
|
k = kk(k2)
|
|
l = ll(k2)
|
|
integral = (SCF_density_matrix_ao_alpha(k,l)+SCF_density_matrix_ao_beta(k,l)) * values(k1)
|
|
ao_two_e_integral_alpha_tmp(i,j) += integral
|
|
ao_two_e_integral_beta_tmp (i,j) += integral
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END DO NOWAIT
|
|
!$OMP CRITICAL
|
|
ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp
|
|
ao_two_e_integral_beta += ao_two_e_integral_beta_tmp
|
|
!$OMP END CRITICAL
|
|
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
|
|
!$OMP END PARALLEL
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) if (ao_num > 100) &
|
|
!$OMP PRIVATE(i,j,l,k1,k,integral_erf,ii,jj,kk,ll,i8,keys_erf,values_erf,n_elements_max_erf, &
|
|
!$OMP n_elements_erf,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)&
|
|
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
|
|
!$OMP ao_integrals_erf_map, ao_two_e_integral_alpha, ao_two_e_integral_beta)
|
|
|
|
|
|
call get_cache_map_n_elements_max(ao_integrals_erf_map,n_elements_max_erf)
|
|
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
|
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
|
allocate(keys_Erf(n_elements_max_erf), values_erf(n_elements_max_erf))
|
|
|
|
ao_two_e_integral_alpha_tmp = 0.d0
|
|
ao_two_e_integral_beta_tmp = 0.d0
|
|
!$OMP DO SCHEDULE(static,1)
|
|
!DIR$ NOVECTOR
|
|
do i8=0_8,ao_integrals_erf_map%map_size
|
|
n_elements_erf = n_elements_max_erf
|
|
call get_cache_map(ao_integrals_erf_map,i8,keys_erf,values_erf,n_elements_erf)
|
|
do k1=1,n_elements_erf
|
|
call two_e_integrals_index_reverse(kk,ii,ll,jj,keys_erf(k1))
|
|
|
|
do k2=1,8
|
|
if (kk(k2)==0) then
|
|
cycle
|
|
endif
|
|
i = ii(k2)
|
|
j = jj(k2)
|
|
k = kk(k2)
|
|
l = ll(k2)
|
|
double precision :: integral_erf
|
|
integral_erf = values_erf(k1)
|
|
ao_two_e_integral_alpha_tmp(l,j) -= (SCF_density_matrix_ao_alpha(k,i) * integral_erf)
|
|
ao_two_e_integral_beta_tmp (l,j) -= (SCF_density_matrix_ao_beta (k,i) * integral_erf)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
!$OMP END DO NOWAIT
|
|
!$OMP CRITICAL
|
|
ao_two_e_integral_alpha = ao_two_e_integral_alpha + ao_two_e_integral_alpha_tmp
|
|
ao_two_e_integral_beta = ao_two_e_integral_beta + ao_two_e_integral_beta_tmp
|
|
!$OMP END CRITICAL
|
|
deallocate(ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
|
|
deallocate(keys_erf,values_erf)
|
|
!$OMP END PARALLEL
|
|
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, Fock_matrix_ao_alpha, (ao_num, ao_num) ]
|
|
&BEGIN_PROVIDER [ double precision, Fock_matrix_ao_beta, (ao_num, ao_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Alpha Fock matrix in ao basis set
|
|
END_DOC
|
|
|
|
integer :: i,j
|
|
do j=1,ao_num
|
|
do i=1,ao_num
|
|
Fock_matrix_ao_alpha(i,j) = Fock_matrix_alpha_no_xc_ao(i,j) + ao_potential_alpha_xc(i,j)
|
|
Fock_matrix_ao_beta(i,j) = Fock_matrix_beta_no_xc_ao(i,j) + ao_potential_beta_xc(i,j)
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, Fock_matrix_alpha_no_xc_ao, (ao_num, ao_num) ]
|
|
&BEGIN_PROVIDER [ double precision, Fock_matrix_beta_no_xc_ao, (ao_num, ao_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Mono electronic an Coulomb matrix in ao basis set
|
|
END_DOC
|
|
|
|
integer :: i,j
|
|
do j=1,ao_num
|
|
do i=1,ao_num
|
|
Fock_matrix_alpha_no_xc_ao(i,j) = ao_one_e_integrals(i,j) + ao_two_e_integral_alpha(i,j)
|
|
Fock_matrix_beta_no_xc_ao(i,j) = ao_one_e_integrals(i,j) + ao_two_e_integral_beta (i,j)
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|