mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-13 21:35:48 +01:00
8b22e38c9c
* fixed laplacian of aos * corrected the laplacians of aos * added dft_one_e * added new feature for new dft functionals * changed the configure to add new functionals * changed the configure * added dft_one_e/README.rst * added README.rst in new_functionals * added source/programmers_guide/new_ks.rst * Thesis Yann * Added gmp installation in configure * improved qp_e_conv_fci * Doc * Typos * Added variance_max * Fixed completion in qp_create * modif TODO * fixed DFT potential for n_states gt 1 * improved pot pbe * trying to improve sr PBE * fixed potential pbe * fixed the vxc smashed for pbe sr and normal * Comments in selection * bug fixed by peter * Fixed bug with zero beta electrons * Update README.rst * Update e_xc_new_func.irp.f * Update links.rst * Update quickstart.rst * Update quickstart.rst * updated cipsi * Fixed energies of non-expected s2 (#9) * Moved diag_algorithm in Davdison * Add print_ci_vector in tools (#11) * Fixed energies of non-expected s2 * Moved diag_algorithm in Davdison * Fixed travis * Added print_ci_vector * Documentation * Cleaned qp_set_mo_class.ml * Removed Core in taskserver * Merge develop-toto and manus (#12) * Fixed energies of non-expected s2 * Moved diag_algorithm in Davdison * Fixed travis * Added print_ci_vector * Documentation * Cleaned qp_set_mo_class.ml * Removed Core in taskserver * Frozen core for heavy atoms * Improved molden module * In sync with manus * Fixed some of the documentation errors * Develop toto (#13) * Fixed energies of non-expected s2 * Moved diag_algorithm in Davdison * Fixed travis * Added print_ci_vector * Documentation * Cleaned qp_set_mo_class.ml * Removed Core in taskserver * Frozen core for heavy atoms * Improved molden module * In sync with manus * Fixed some of the documentation errors * Develop manus (#14) * modified printing for rpt2 * Comment * Fixed plugins * Scripting for functionals * Documentation * Develop (#10) * fixed laplacian of aos * corrected the laplacians of aos * added dft_one_e * added new feature for new dft functionals * changed the configure to add new functionals * changed the configure * added dft_one_e/README.rst * added README.rst in new_functionals * added source/programmers_guide/new_ks.rst * Thesis Yann * Added gmp installation in configure * improved qp_e_conv_fci * Doc * Typos * Added variance_max * Fixed completion in qp_create * modif TODO * fixed DFT potential for n_states gt 1 * improved pot pbe * trying to improve sr PBE * fixed potential pbe * fixed the vxc smashed for pbe sr and normal * Comments in selection * bug fixed by peter * Fixed bug with zero beta electrons * Update README.rst * Update e_xc_new_func.irp.f * Update links.rst * Update quickstart.rst * Update quickstart.rst * updated cipsi * Fixed energies of non-expected s2 (#9) * Moved diag_algorithm in Davdison * some modifs * modified gfortran_debug.cfg * fixed automatization of functionals * modified e_xc_general.irp.f * minor modifs in ref_bitmask.irp.f * modifying functionals * rs_ks_scf and ks_scf compiles with the automatic handling of functionals * removed prints * fixed configure * fixed the new functionals * Merge toto * modified automatic functionals * Changed python into python2 * from_xyz suppressed * Cleaning repo * Update README.md * Update README.md * Contributors * Update GITHUB.md * bibtex
197 lines
7.1 KiB
Fortran
197 lines
7.1 KiB
Fortran
|
|
|
|
|
|
BEGIN_PROVIDER[double precision, energy_x_lda, (N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! exchange energy with the lda functional
|
|
END_DOC
|
|
integer :: istate,i,j
|
|
double precision :: r(3)
|
|
double precision :: mu,weight
|
|
double precision :: e_x,vx_a,vx_b
|
|
double precision, allocatable :: rhoa(:),rhob(:)
|
|
allocate(rhoa(N_states), rhob(N_states))
|
|
energy_x_lda = 0.d0
|
|
do istate = 1, N_states
|
|
do i = 1, n_points_final_grid
|
|
r(1) = final_grid_points(1,i)
|
|
r(2) = final_grid_points(2,i)
|
|
r(3) = final_grid_points(3,i)
|
|
weight = final_weight_at_r_vector(i)
|
|
rhoa(istate) = one_e_dm_alpha_at_r(i,istate)
|
|
rhob(istate) = one_e_dm_beta_at_r(i,istate)
|
|
call ex_lda(rhoa(istate),rhob(istate),e_x,vx_a,vx_b)
|
|
energy_x_lda(istate) += weight * e_x
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER[double precision, energy_c_lda, (N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! correlation energy with the lda functional
|
|
END_DOC
|
|
integer :: istate,i,j
|
|
double precision :: r(3)
|
|
double precision :: mu,weight
|
|
double precision :: e_c,vc_a,vc_b
|
|
double precision, allocatable :: rhoa(:),rhob(:)
|
|
allocate(rhoa(N_states), rhob(N_states))
|
|
energy_c_lda = 0.d0
|
|
do istate = 1, N_states
|
|
do i = 1, n_points_final_grid
|
|
r(1) = final_grid_points(1,i)
|
|
r(2) = final_grid_points(2,i)
|
|
r(3) = final_grid_points(3,i)
|
|
weight = final_weight_at_r_vector(i)
|
|
rhoa(istate) = one_e_dm_alpha_at_r(i,istate)
|
|
rhob(istate) = one_e_dm_beta_at_r(i,istate)
|
|
call ec_lda(rhoa(istate),rhob(istate),e_c,vc_a,vc_b)
|
|
energy_c_lda(istate) += weight * e_c
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, potential_x_alpha_ao_lda,(ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, potential_x_beta_ao_lda,(ao_num,ao_num,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! short range exchange alpha/beta potentials with lda functional on the |AO| basis
|
|
END_DOC
|
|
! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states.
|
|
integer :: istate
|
|
do istate = 1, N_states
|
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_in_r_array,size(aos_in_r_array,1), &
|
|
aos_vx_alpha_lda_w(1,1,istate),size(aos_vx_alpha_lda_w,1),0.d0,&
|
|
potential_x_alpha_ao_lda(1,1,istate),size(potential_x_alpha_ao_lda,1))
|
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_in_r_array,size(aos_in_r_array,1), &
|
|
aos_vx_beta_lda_w(1,1,istate),size(aos_vx_beta_lda_w,1),0.d0,&
|
|
potential_x_beta_ao_lda(1,1,istate),size(potential_x_beta_ao_lda,1))
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, potential_c_alpha_ao_lda,(ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, potential_c_beta_ao_lda,(ao_num,ao_num,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! short range correlation alpha/beta potentials with lda functional on the |AO| basis
|
|
END_DOC
|
|
! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states.
|
|
integer :: istate
|
|
do istate = 1, N_states
|
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_in_r_array,size(aos_in_r_array,1), &
|
|
aos_vc_alpha_lda_w(1,1,istate),size(aos_vc_alpha_lda_w,1),0.d0,&
|
|
potential_c_alpha_ao_lda(1,1,istate),size(potential_c_alpha_ao_lda,1))
|
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_in_r_array,size(aos_in_r_array,1), &
|
|
aos_vc_beta_lda_w(1,1,istate),size(aos_vc_beta_lda_w,1),0.d0,&
|
|
potential_c_beta_ao_lda(1,1,istate),size(potential_c_beta_ao_lda,1))
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, potential_xc_alpha_ao_lda,(ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, potential_xc_beta_ao_lda ,(ao_num,ao_num,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! short range exchange/correlation alpha/beta potentials with lda functional on the AO basis
|
|
END_DOC
|
|
integer :: istate
|
|
double precision :: wall_1,wall_2
|
|
call wall_time(wall_1)
|
|
print*,'providing the XC potentials lda '
|
|
do istate = 1, N_states
|
|
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vxc_alpha_lda_w(1,1,istate),n_points_final_grid,0.d0,potential_xc_alpha_ao_lda(1,1,istate),ao_num)
|
|
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vxc_beta_lda_w(1,1,istate) ,n_points_final_grid,0.d0,potential_xc_beta_ao_lda(1,1,istate),ao_num)
|
|
enddo
|
|
call wall_time(wall_2)
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER[double precision, aos_vc_alpha_lda_w, (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_vc_beta_lda_w, (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_vx_alpha_lda_w, (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_vx_beta_lda_w, (ao_num,n_points_final_grid,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! aos_vxc_alpha_lda_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
|
END_DOC
|
|
integer :: istate,i,j
|
|
double precision :: r(3)
|
|
double precision :: mu,weight
|
|
double precision :: e_c,vc_a,vc_b,e_x,vx_a,vx_b
|
|
double precision, allocatable :: rhoa(:),rhob(:)
|
|
double precision :: mu_local
|
|
mu_local = 1.d-9
|
|
allocate(rhoa(N_states), rhob(N_states))
|
|
do istate = 1, N_states
|
|
do i = 1, n_points_final_grid
|
|
r(1) = final_grid_points(1,i)
|
|
r(2) = final_grid_points(2,i)
|
|
r(3) = final_grid_points(3,i)
|
|
weight = final_weight_at_r_vector(i)
|
|
rhoa(istate) = one_e_dm_alpha_at_r(i,istate)
|
|
rhob(istate) = one_e_dm_beta_at_r(i,istate)
|
|
call ec_lda_sr(mu_local,rhoa(istate),rhob(istate),e_c,vc_a,vc_b)
|
|
call ex_lda_sr(mu_local,rhoa(istate),rhob(istate),e_x,vx_a,vx_b)
|
|
do j =1, ao_num
|
|
aos_vc_alpha_lda_w(j,i,istate) = vc_a * aos_in_r_array(j,i)*weight
|
|
aos_vc_beta_lda_w(j,i,istate) = vc_b * aos_in_r_array(j,i)*weight
|
|
aos_vx_alpha_lda_w(j,i,istate) = vx_a * aos_in_r_array(j,i)*weight
|
|
aos_vx_beta_lda_w(j,i,istate) = vx_b * aos_in_r_array(j,i)*weight
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
|
|
|
|
BEGIN_PROVIDER[double precision, aos_vxc_alpha_lda_w, (n_points_final_grid,ao_num,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_vxc_beta_lda_w, (n_points_final_grid,ao_num,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! aos_vxc_alpha_lda_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
|
END_DOC
|
|
integer :: istate,i,j
|
|
double precision :: r(3)
|
|
double precision :: mu,weight
|
|
double precision :: e_c,vc_a,vc_b,e_x,vx_a,vx_b
|
|
double precision, allocatable :: rhoa(:),rhob(:)
|
|
double precision :: mu_local
|
|
mu_local = 1.d-9
|
|
allocate(rhoa(N_states), rhob(N_states))
|
|
do istate = 1, N_states
|
|
do i = 1, n_points_final_grid
|
|
r(1) = final_grid_points(1,i)
|
|
r(2) = final_grid_points(2,i)
|
|
r(3) = final_grid_points(3,i)
|
|
weight = final_weight_at_r_vector(i)
|
|
rhoa(istate) = one_e_dm_alpha_at_r(i,istate)
|
|
rhob(istate) = one_e_dm_beta_at_r(i,istate)
|
|
call ec_lda_sr(mu_local,rhoa(istate),rhob(istate),e_c,vc_a,vc_b)
|
|
call ex_lda_sr(mu_local,rhoa(istate),rhob(istate),e_x,vx_a,vx_b)
|
|
do j =1, ao_num
|
|
aos_vxc_alpha_lda_w(i,j,istate) = (vc_a + vx_a) * aos_in_r_array(j,i)*weight
|
|
aos_vxc_beta_lda_w(i,j,istate) = (vc_b + vx_b) * aos_in_r_array(j,i)*weight
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|