mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-09 06:53:38 +01:00
72 lines
1.5 KiB
Fortran
72 lines
1.5 KiB
Fortran
! Vector to matrix indexes
|
|
|
|
! *Compute the indexes p,q of a matrix element with the vector index i*
|
|
|
|
! Vector (i) -> lower diagonal matrix (p,q), p > q
|
|
|
|
! If a matrix is antisymmetric it can be reshaped as a vector. And the
|
|
! vector can be reshaped as an antisymmetric matrix
|
|
|
|
! \begin{align*}
|
|
! \begin{pmatrix}
|
|
! 0 & -1 & -2 & -4 \\
|
|
! 1 & 0 & -3 & -5 \\
|
|
! 2 & 3 & 0 & -6 \\
|
|
! 4 & 5 & 6 & 0
|
|
! \end{pmatrix}
|
|
! \Leftrightarrow
|
|
! \begin{pmatrix}
|
|
! 1 & 2 & 3 & 4 & 5 & 6
|
|
! \end{pmatrix}
|
|
! \end{align*}
|
|
|
|
! !!! Here the algorithm only work for the lower diagonal !!!
|
|
|
|
! Input:
|
|
! | i | integer | index in the vector |
|
|
|
|
! Ouput:
|
|
! | p,q | integer | corresponding indexes in the lower diagonal of a matrix |
|
|
! | | | p > q, |
|
|
! | | | p -> row, |
|
|
! | | | q -> column |
|
|
|
|
|
|
subroutine vec_to_mat_index(i,p,q)
|
|
|
|
include 'pi.h'
|
|
|
|
!BEGIN_DOC
|
|
! Compute the indexes (p,q) of the element in the lower diagonal matrix knowing
|
|
! its index i a vector
|
|
!END_DOC
|
|
|
|
implicit none
|
|
|
|
! Variables
|
|
|
|
! in
|
|
integer,intent(in) :: i
|
|
|
|
! out
|
|
integer, intent(out) :: p,q
|
|
|
|
! internal
|
|
integer :: a,b
|
|
double precision :: da
|
|
|
|
da = 0.5d0*(1+ sqrt(1d0+8d0*DBLE(i)))
|
|
a = INT(da)
|
|
if ((a*(a-1))/2==i) then
|
|
p = a-1
|
|
else
|
|
p = a
|
|
endif
|
|
b = p*(p-1)/2
|
|
|
|
! Matrix element indexes
|
|
p = p + 1
|
|
q = i - b
|
|
|
|
end subroutine
|