mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-09-12 02:38:31 +02:00
356 lines
13 KiB
Fortran
356 lines
13 KiB
Fortran
subroutine give_f_ii_val_ab(r1,r2,f_ii_val_ab,two_bod_dens)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! contribution from purely inactive orbitals to f_{\Psi^B}(r_1,r_2) for a CAS wave function
|
|
END_DOC
|
|
double precision, intent(in) :: r1(3),r2(3)
|
|
double precision, intent(out):: f_ii_val_ab,two_bod_dens
|
|
integer :: i,j,m,n,i_m,i_n
|
|
integer :: i_i,i_j
|
|
double precision, allocatable :: mos_array_inact_r1(:),mos_array_inact_r2(:)
|
|
double precision, allocatable :: mos_array_basis_r1(:),mos_array_basis_r2(:)
|
|
double precision, allocatable :: mos_array_r1(:) , mos_array_r2(:)
|
|
double precision :: get_two_e_integral
|
|
! You get all orbitals in r_1 and r_2
|
|
allocate(mos_array_r1(mo_num) , mos_array_r2(mo_num) )
|
|
call give_all_mos_at_r(r1,mos_array_r1)
|
|
call give_all_mos_at_r(r2,mos_array_r2)
|
|
! You extract the inactive orbitals
|
|
allocate(mos_array_inact_r1(n_inact_orb) , mos_array_inact_r2(n_inact_orb) )
|
|
do i_m = 1, n_inact_orb
|
|
mos_array_inact_r1(i_m) = mos_array_r1(list_inact(i_m))
|
|
enddo
|
|
do i_m = 1, n_inact_orb
|
|
mos_array_inact_r2(i_m) = mos_array_r2(list_inact(i_m))
|
|
enddo
|
|
|
|
! You extract the orbitals belonging to the space \mathcal{B}
|
|
allocate(mos_array_basis_r1(n_basis_orb) , mos_array_basis_r2(n_basis_orb) )
|
|
do i_m = 1, n_basis_orb
|
|
mos_array_basis_r1(i_m) = mos_array_r1(list_basis(i_m))
|
|
mos_array_basis_r2(i_m) = mos_array_r2(list_basis(i_m))
|
|
enddo
|
|
|
|
f_ii_val_ab = 0.d0
|
|
two_bod_dens = 0.d0
|
|
! You browse all OCCUPIED ALPHA electrons in the \mathcal{A} space
|
|
do m = 1, n_inact_orb ! electron 1
|
|
! You browse all OCCUPIED BETA electrons in the \mathcal{A} space
|
|
do n = 1, n_inact_orb ! electron 2
|
|
! two_bod_dens(r_1,r_2) = n_alpha(r_1) * n_beta(r_2)
|
|
two_bod_dens += mos_array_inact_r1(m) * mos_array_inact_r1(m) * mos_array_inact_r2(n) * mos_array_inact_r2(n)
|
|
! You browse all COUPLE OF ORBITALS in the \mathacal{B} space
|
|
do i = 1, n_basis_orb
|
|
do j = 1, n_basis_orb
|
|
! 2 1 2 1
|
|
f_ii_val_ab += two_e_int_ii_f(j,i,n,m) * mos_array_inact_r1(m) * mos_array_basis_r1(i) &
|
|
* mos_array_inact_r2(n) * mos_array_basis_r2(j)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
! multiply by two to adapt to the N(N-1) normalization condition of the active two-rdm
|
|
f_ii_val_ab *= 2.d0
|
|
two_bod_dens *= 2.d0
|
|
end
|
|
|
|
|
|
subroutine give_f_ia_val_ab(r1,r2,f_ia_val_ab,two_bod_dens,istate)
|
|
BEGIN_DOC
|
|
! contribution from inactive and active orbitals to f_{\Psi^B}(r_1,r_2) for the "istate" state of a CAS wave function
|
|
END_DOC
|
|
implicit none
|
|
integer, intent(in) :: istate
|
|
double precision, intent(in) :: r1(3),r2(3)
|
|
double precision, intent(out):: f_ia_val_ab,two_bod_dens
|
|
integer :: i,orb_i,a,orb_a,n,m,b
|
|
double precision :: rho
|
|
double precision, allocatable :: mos_array_r1(:) , mos_array_r2(:)
|
|
double precision, allocatable :: mos_array_inact_r1(:),mos_array_inact_r2(:)
|
|
double precision, allocatable :: mos_array_basis_r1(:),mos_array_basis_r2(:)
|
|
double precision, allocatable :: mos_array_act_r1(:),mos_array_act_r2(:)
|
|
double precision, allocatable :: integrals_array(:,:),rho_tilde(:,:),v_tilde(:,:)
|
|
|
|
f_ia_val_ab = 0.d0
|
|
two_bod_dens = 0.d0
|
|
! You get all orbitals in r_1 and r_2
|
|
allocate(mos_array_r1(mo_num) , mos_array_r2(mo_num) )
|
|
call give_all_mos_at_r(r1,mos_array_r1)
|
|
call give_all_mos_at_r(r2,mos_array_r2)
|
|
|
|
! You extract the inactive orbitals
|
|
allocate( mos_array_inact_r1(n_inact_orb) , mos_array_inact_r2(n_inact_orb) )
|
|
do i = 1, n_inact_orb
|
|
mos_array_inact_r1(i) = mos_array_r1(list_inact(i))
|
|
enddo
|
|
do i= 1, n_inact_orb
|
|
mos_array_inact_r2(i) = mos_array_r2(list_inact(i))
|
|
enddo
|
|
|
|
! You extract the active orbitals
|
|
allocate( mos_array_act_r1(n_basis_orb) , mos_array_act_r2(n_basis_orb) )
|
|
do i= 1, n_act_orb
|
|
mos_array_act_r1(i) = mos_array_r1(list_act(i))
|
|
enddo
|
|
do i= 1, n_act_orb
|
|
mos_array_act_r2(i) = mos_array_r2(list_act(i))
|
|
enddo
|
|
|
|
! You extract the orbitals belonging to the space \mathcal{B}
|
|
allocate( mos_array_basis_r1(n_basis_orb) , mos_array_basis_r2(n_basis_orb) )
|
|
do i= 1, n_basis_orb
|
|
mos_array_basis_r1(i) = mos_array_r1(list_basis(i))
|
|
enddo
|
|
do i= 1, n_basis_orb
|
|
mos_array_basis_r2(i) = mos_array_r2(list_basis(i))
|
|
enddo
|
|
|
|
! Contracted density : intermediate quantity
|
|
! rho_tilde(i,a) = \sum_b rho(b,a) * phi_i(1) * phi_j(2)
|
|
allocate(rho_tilde(n_inact_orb,n_act_orb))
|
|
two_bod_dens = 0.d0
|
|
do a = 1, n_act_orb
|
|
do i = 1, n_inact_orb
|
|
rho_tilde(i,a) = 0.d0
|
|
do b = 1, n_act_orb
|
|
rho = one_e_act_dm_beta_mo_for_dft(b,a,istate) + one_e_act_dm_alpha_mo_for_dft(b,a,istate)
|
|
two_bod_dens += mos_array_inact_r1(i) * mos_array_inact_r1(i) * mos_array_act_r2(a) * mos_array_act_r2(b) * rho
|
|
rho_tilde(i,a) += rho * mos_array_inact_r1(i) * mos_array_act_r2(b)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
! Contracted two-e integrals : intermediate quantity
|
|
! v_tilde(i,a) = \sum_{m,n} phi_m(1) * phi_n(2) < i a | m n >
|
|
allocate( v_tilde(n_act_orb,n_act_orb) )
|
|
allocate( integrals_array(mo_num,mo_num) )
|
|
v_tilde = 0.d0
|
|
do a = 1, n_act_orb
|
|
orb_a = list_act(a)
|
|
do i = 1, n_inact_orb
|
|
v_tilde(i,a) = 0.d0
|
|
orb_i = list_inact(i)
|
|
! call get_mo_two_e_integrals_ij(orb_i,orb_a,mo_num,integrals_array,mo_integrals_map)
|
|
do m = 1, n_basis_orb
|
|
do n = 1, n_basis_orb
|
|
! v_tilde(i,a) += integrals_array(n,m) * mos_array_basis_r2(n) * mos_array_basis_r1(m)
|
|
v_tilde(i,a) += two_e_int_ia_f(n,m,i,a) * mos_array_basis_r2(n) * mos_array_basis_r1(m)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
do a = 1, n_act_orb
|
|
do i = 1, n_inact_orb
|
|
f_ia_val_ab += v_tilde(i,a) * rho_tilde(i,a)
|
|
enddo
|
|
enddo
|
|
! multiply by two to adapt to the N(N-1) normalization condition of the active two-rdm
|
|
f_ia_val_ab *= 2.d0
|
|
two_bod_dens *= 2.d0
|
|
end
|
|
|
|
|
|
subroutine give_f_aa_val_ab(r1,r2,f_aa_val_ab,two_bod_dens,istate)
|
|
BEGIN_DOC
|
|
! contribution from purely active orbitals to f_{\Psi^B}(r_1,r_2) for the "istate" state of a CAS wave function
|
|
END_DOC
|
|
implicit none
|
|
integer, intent(in) :: istate
|
|
double precision, intent(in) :: r1(3),r2(3)
|
|
double precision, intent(out):: f_aa_val_ab,two_bod_dens
|
|
integer :: i,orb_i,a,orb_a,n,m,b,c,d
|
|
double precision :: rho
|
|
double precision, allocatable :: mos_array_r1(:) , mos_array_r2(:)
|
|
double precision, allocatable :: mos_array_basis_r1(:),mos_array_basis_r2(:)
|
|
double precision, allocatable :: mos_array_act_r1(:),mos_array_act_r2(:)
|
|
double precision, allocatable :: integrals_array(:,:),rho_tilde(:,:),v_tilde(:,:)
|
|
|
|
f_aa_val_ab = 0.d0
|
|
two_bod_dens = 0.d0
|
|
! You get all orbitals in r_1 and r_2
|
|
allocate(mos_array_r1(mo_num) , mos_array_r2(mo_num) )
|
|
call give_all_mos_at_r(r1,mos_array_r1)
|
|
call give_all_mos_at_r(r2,mos_array_r2)
|
|
|
|
! You extract the active orbitals
|
|
allocate( mos_array_act_r1(n_basis_orb) , mos_array_act_r2(n_basis_orb) )
|
|
do i= 1, n_act_orb
|
|
mos_array_act_r1(i) = mos_array_r1(list_act(i))
|
|
enddo
|
|
do i= 1, n_act_orb
|
|
mos_array_act_r2(i) = mos_array_r2(list_act(i))
|
|
enddo
|
|
|
|
! You extract the orbitals belonging to the space \mathcal{B}
|
|
allocate( mos_array_basis_r1(n_basis_orb) , mos_array_basis_r2(n_basis_orb) )
|
|
do i= 1, n_basis_orb
|
|
mos_array_basis_r1(i) = mos_array_r1(list_basis(i))
|
|
enddo
|
|
do i= 1, n_basis_orb
|
|
mos_array_basis_r2(i) = mos_array_r2(list_basis(i))
|
|
enddo
|
|
|
|
! Contracted density : intermediate quantity
|
|
! rho_tilde(i,a) = \sum_b rho(b,a) * phi_i(1) * phi_j(2)
|
|
allocate(rho_tilde(n_act_orb,n_act_orb))
|
|
two_bod_dens = 0.d0
|
|
rho_tilde = 0.d0
|
|
do a = 1, n_act_orb ! 1
|
|
do b = 1, n_act_orb ! 2
|
|
do c = 1, n_act_orb ! 1
|
|
do d = 1, n_act_orb ! 2
|
|
rho = mos_array_act_r1(c) * mos_array_act_r2(d) * act_2_rdm_ab_mo(d,c,b,a,istate)
|
|
rho_tilde(b,a) += rho
|
|
two_bod_dens += rho * mos_array_act_r1(a) * mos_array_act_r2(b)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
! Contracted two-e integrals : intermediate quantity
|
|
! v_tilde(i,a) = \sum_{m,n} phi_m(1) * phi_n(2) < i a | m n >
|
|
allocate( v_tilde(n_act_orb,n_act_orb) )
|
|
v_tilde = 0.d0
|
|
do a = 1, n_act_orb
|
|
do b = 1, n_act_orb
|
|
v_tilde(b,a) = 0.d0
|
|
do m = 1, n_basis_orb
|
|
do n = 1, n_basis_orb
|
|
v_tilde(b,a) += two_e_int_aa_f(n,m,b,a) * mos_array_basis_r2(n) * mos_array_basis_r1(m)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
do a = 1, n_act_orb
|
|
do b = 1, n_act_orb
|
|
f_aa_val_ab += v_tilde(b,a) * rho_tilde(b,a)
|
|
enddo
|
|
enddo
|
|
|
|
! DO NOT multiply by two as in give_f_ii_val_ab and give_f_ia_val_ab because the N(N-1) normalization condition of the active two-rdm
|
|
end
|
|
|
|
BEGIN_PROVIDER [double precision, two_e_int_aa_f, (n_basis_orb,n_basis_orb,n_act_orb,n_act_orb)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! list of two-electron integrals (built with the MOs belonging to the \mathcal{B} space)
|
|
!
|
|
! needed to compute the function f_{ii}(r_1,r_2)
|
|
!
|
|
! two_e_int_aa_f(j,i,n,m) = < j i | n m > where all orbitals belong to "list_basis"
|
|
END_DOC
|
|
integer :: orb_i,orb_j,i,j,orb_m,orb_n,m,n
|
|
double precision :: integrals_array(mo_num,mo_num),get_two_e_integral
|
|
PROVIDE mo_two_e_integrals_in_map mo_integrals_map big_array_exchange_integrals
|
|
do orb_m = 1, n_act_orb ! electron 1
|
|
m = list_act(orb_m)
|
|
do orb_n = 1, n_act_orb ! electron 2
|
|
n = list_act(orb_n)
|
|
call get_mo_two_e_integrals_ij(m,n,mo_num,integrals_array,mo_integrals_map)
|
|
do orb_i = 1, n_basis_orb ! electron 1
|
|
i = list_basis(orb_i)
|
|
do orb_j = 1, n_basis_orb ! electron 2
|
|
j = list_basis(orb_j)
|
|
! 2 1 2 1
|
|
two_e_int_aa_f(orb_j,orb_i,orb_n,orb_m) = get_two_e_integral(m,n,i,j,mo_integrals_map)
|
|
! two_e_int_aa_f(orb_j,orb_i,orb_n,orb_m) = integrals_array(j,i)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, two_e_int_ia_f, (n_basis_orb,n_basis_orb,n_inact_orb,n_act_orb)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! list of two-electron integrals (built with the MOs belonging to the \mathcal{B} space)
|
|
!
|
|
! needed to compute the function f_{ia}(r_1,r_2)
|
|
!
|
|
! two_e_int_aa_f(j,i,n,m) = < j i | n m > where all orbitals belong to "list_basis"
|
|
END_DOC
|
|
integer :: orb_i,orb_j,i,j,orb_m,orb_n,m,n
|
|
double precision :: integrals_array(mo_num,mo_num),get_two_e_integral
|
|
PROVIDE mo_two_e_integrals_in_map mo_integrals_map big_array_exchange_integrals
|
|
do orb_m = 1, n_act_orb ! electron 1
|
|
m = list_act(orb_m)
|
|
do orb_n = 1, n_inact_orb ! electron 2
|
|
n = list_inact(orb_n)
|
|
call get_mo_two_e_integrals_ij(m,n,mo_num,integrals_array,mo_integrals_map)
|
|
do orb_i = 1, n_basis_orb ! electron 1
|
|
i = list_basis(orb_i)
|
|
do orb_j = 1, n_basis_orb ! electron 2
|
|
j = list_basis(orb_j)
|
|
! 2 1 2 1
|
|
! two_e_int_ia_f(orb_j,orb_i,orb_n,orb_m) = get_two_e_integral(m,n,i,j,mo_integrals_map)
|
|
two_e_int_ia_f(orb_j,orb_i,orb_n,orb_m) = integrals_array(j,i)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, two_e_int_ii_f, (n_basis_orb,n_basis_orb,n_inact_orb,n_inact_orb)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! list of two-electron integrals (built with the MOs belonging to the \mathcal{B} space)
|
|
!
|
|
! needed to compute the function f_{ii}(r_1,r_2)
|
|
!
|
|
! two_e_int_ii_f(j,i,n,m) = < j i | n m > where all orbitals belong to "list_basis"
|
|
END_DOC
|
|
integer :: orb_i,orb_j,i,j,orb_m,orb_n,m,n
|
|
double precision :: get_two_e_integral,integrals_array(mo_num,mo_num)
|
|
PROVIDE mo_two_e_integrals_in_map mo_integrals_map big_array_exchange_integrals
|
|
do orb_m = 1, n_inact_orb ! electron 1
|
|
m = list_inact(orb_m)
|
|
do orb_n = 1, n_inact_orb ! electron 2
|
|
n = list_inact(orb_n)
|
|
call get_mo_two_e_integrals_ij(m,n,mo_num,integrals_array,mo_integrals_map)
|
|
do orb_i = 1, n_basis_orb ! electron 1
|
|
i = list_basis(orb_i)
|
|
do orb_j = 1, n_basis_orb ! electron 2
|
|
j = list_basis(orb_j)
|
|
! 2 1 2 1
|
|
! two_e_int_ii_f(orb_j,orb_i,orb_n,orb_m) = get_two_e_integral(m,n,i,j,mo_integrals_map)
|
|
two_e_int_ii_f(orb_j,orb_i,orb_n,orb_m) = integrals_array(j,i)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
|
|
subroutine give_mu_of_r_cas(r,istate,mu_of_r,f_psi,n2_psi)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! returns mu(r), f_psi, n2_psi for a general cas wave function
|
|
END_DOC
|
|
integer, intent(in) :: istate
|
|
double precision, intent(in) :: r(3)
|
|
double precision, intent(out) :: mu_of_r,f_psi,n2_psi
|
|
double precision :: f_ii_val_ab,two_bod_dens_ii
|
|
double precision :: f_ia_val_ab,two_bod_dens_ia
|
|
double precision :: f_aa_val_ab,two_bod_dens_aa
|
|
double precision :: sqpi,w_psi
|
|
sqpi = dsqrt(dacos(-1.d0))
|
|
! inactive-inactive part of f_psi(r1,r2)
|
|
call give_f_ii_val_ab(r,r,f_ii_val_ab,two_bod_dens_ii)
|
|
! inactive-active part of f_psi(r1,r2)
|
|
call give_f_ia_val_ab(r,r,f_ia_val_ab,two_bod_dens_ia,istate)
|
|
! active-active part of f_psi(r1,r2)
|
|
call give_f_aa_val_ab(r,r,f_aa_val_ab,two_bod_dens_aa,istate)
|
|
|
|
f_psi = f_ii_val_ab + f_ia_val_ab + f_aa_val_ab
|
|
n2_psi = two_bod_dens_ii + two_bod_dens_ia + two_bod_dens_aa
|
|
if(n2_psi.le.1.d-12.or.f_psi.le.0.d0.or.f_psi * n2_psi.lt.0.d0)then
|
|
w_psi = 1.d+10
|
|
else
|
|
w_psi = f_psi / n2_psi
|
|
endif
|
|
mu_of_r = w_psi * sqpi * 0.5d0
|
|
|
|
end
|