9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-09-12 02:38:31 +02:00
qp2/src/mu_of_r/f_psi_i_a_v_utils.irp.f
eginer 46dfb551a8
Some checks failed
continuous-integration/drone/push Build is failing
modified the factor two in rdm
2023-03-04 13:07:12 +01:00

356 lines
13 KiB
Fortran

subroutine give_f_ii_val_ab(r1,r2,f_ii_val_ab,two_bod_dens)
implicit none
BEGIN_DOC
! contribution from purely inactive orbitals to f_{\Psi^B}(r_1,r_2) for a CAS wave function
END_DOC
double precision, intent(in) :: r1(3),r2(3)
double precision, intent(out):: f_ii_val_ab,two_bod_dens
integer :: i,j,m,n,i_m,i_n
integer :: i_i,i_j
double precision, allocatable :: mos_array_inact_r1(:),mos_array_inact_r2(:)
double precision, allocatable :: mos_array_basis_r1(:),mos_array_basis_r2(:)
double precision, allocatable :: mos_array_r1(:) , mos_array_r2(:)
double precision :: get_two_e_integral
! You get all orbitals in r_1 and r_2
allocate(mos_array_r1(mo_num) , mos_array_r2(mo_num) )
call give_all_mos_at_r(r1,mos_array_r1)
call give_all_mos_at_r(r2,mos_array_r2)
! You extract the inactive orbitals
allocate(mos_array_inact_r1(n_inact_orb) , mos_array_inact_r2(n_inact_orb) )
do i_m = 1, n_inact_orb
mos_array_inact_r1(i_m) = mos_array_r1(list_inact(i_m))
enddo
do i_m = 1, n_inact_orb
mos_array_inact_r2(i_m) = mos_array_r2(list_inact(i_m))
enddo
! You extract the orbitals belonging to the space \mathcal{B}
allocate(mos_array_basis_r1(n_basis_orb) , mos_array_basis_r2(n_basis_orb) )
do i_m = 1, n_basis_orb
mos_array_basis_r1(i_m) = mos_array_r1(list_basis(i_m))
mos_array_basis_r2(i_m) = mos_array_r2(list_basis(i_m))
enddo
f_ii_val_ab = 0.d0
two_bod_dens = 0.d0
! You browse all OCCUPIED ALPHA electrons in the \mathcal{A} space
do m = 1, n_inact_orb ! electron 1
! You browse all OCCUPIED BETA electrons in the \mathcal{A} space
do n = 1, n_inact_orb ! electron 2
! two_bod_dens(r_1,r_2) = n_alpha(r_1) * n_beta(r_2)
two_bod_dens += mos_array_inact_r1(m) * mos_array_inact_r1(m) * mos_array_inact_r2(n) * mos_array_inact_r2(n)
! You browse all COUPLE OF ORBITALS in the \mathacal{B} space
do i = 1, n_basis_orb
do j = 1, n_basis_orb
! 2 1 2 1
f_ii_val_ab += two_e_int_ii_f(j,i,n,m) * mos_array_inact_r1(m) * mos_array_basis_r1(i) &
* mos_array_inact_r2(n) * mos_array_basis_r2(j)
enddo
enddo
enddo
enddo
! multiply by two to adapt to the N(N-1) normalization condition of the active two-rdm
f_ii_val_ab *= 2.d0
two_bod_dens *= 2.d0
end
subroutine give_f_ia_val_ab(r1,r2,f_ia_val_ab,two_bod_dens,istate)
BEGIN_DOC
! contribution from inactive and active orbitals to f_{\Psi^B}(r_1,r_2) for the "istate" state of a CAS wave function
END_DOC
implicit none
integer, intent(in) :: istate
double precision, intent(in) :: r1(3),r2(3)
double precision, intent(out):: f_ia_val_ab,two_bod_dens
integer :: i,orb_i,a,orb_a,n,m,b
double precision :: rho
double precision, allocatable :: mos_array_r1(:) , mos_array_r2(:)
double precision, allocatable :: mos_array_inact_r1(:),mos_array_inact_r2(:)
double precision, allocatable :: mos_array_basis_r1(:),mos_array_basis_r2(:)
double precision, allocatable :: mos_array_act_r1(:),mos_array_act_r2(:)
double precision, allocatable :: integrals_array(:,:),rho_tilde(:,:),v_tilde(:,:)
f_ia_val_ab = 0.d0
two_bod_dens = 0.d0
! You get all orbitals in r_1 and r_2
allocate(mos_array_r1(mo_num) , mos_array_r2(mo_num) )
call give_all_mos_at_r(r1,mos_array_r1)
call give_all_mos_at_r(r2,mos_array_r2)
! You extract the inactive orbitals
allocate( mos_array_inact_r1(n_inact_orb) , mos_array_inact_r2(n_inact_orb) )
do i = 1, n_inact_orb
mos_array_inact_r1(i) = mos_array_r1(list_inact(i))
enddo
do i= 1, n_inact_orb
mos_array_inact_r2(i) = mos_array_r2(list_inact(i))
enddo
! You extract the active orbitals
allocate( mos_array_act_r1(n_basis_orb) , mos_array_act_r2(n_basis_orb) )
do i= 1, n_act_orb
mos_array_act_r1(i) = mos_array_r1(list_act(i))
enddo
do i= 1, n_act_orb
mos_array_act_r2(i) = mos_array_r2(list_act(i))
enddo
! You extract the orbitals belonging to the space \mathcal{B}
allocate( mos_array_basis_r1(n_basis_orb) , mos_array_basis_r2(n_basis_orb) )
do i= 1, n_basis_orb
mos_array_basis_r1(i) = mos_array_r1(list_basis(i))
enddo
do i= 1, n_basis_orb
mos_array_basis_r2(i) = mos_array_r2(list_basis(i))
enddo
! Contracted density : intermediate quantity
! rho_tilde(i,a) = \sum_b rho(b,a) * phi_i(1) * phi_j(2)
allocate(rho_tilde(n_inact_orb,n_act_orb))
two_bod_dens = 0.d0
do a = 1, n_act_orb
do i = 1, n_inact_orb
rho_tilde(i,a) = 0.d0
do b = 1, n_act_orb
rho = one_e_act_dm_beta_mo_for_dft(b,a,istate) + one_e_act_dm_alpha_mo_for_dft(b,a,istate)
two_bod_dens += mos_array_inact_r1(i) * mos_array_inact_r1(i) * mos_array_act_r2(a) * mos_array_act_r2(b) * rho
rho_tilde(i,a) += rho * mos_array_inact_r1(i) * mos_array_act_r2(b)
enddo
enddo
enddo
! Contracted two-e integrals : intermediate quantity
! v_tilde(i,a) = \sum_{m,n} phi_m(1) * phi_n(2) < i a | m n >
allocate( v_tilde(n_act_orb,n_act_orb) )
allocate( integrals_array(mo_num,mo_num) )
v_tilde = 0.d0
do a = 1, n_act_orb
orb_a = list_act(a)
do i = 1, n_inact_orb
v_tilde(i,a) = 0.d0
orb_i = list_inact(i)
! call get_mo_two_e_integrals_ij(orb_i,orb_a,mo_num,integrals_array,mo_integrals_map)
do m = 1, n_basis_orb
do n = 1, n_basis_orb
! v_tilde(i,a) += integrals_array(n,m) * mos_array_basis_r2(n) * mos_array_basis_r1(m)
v_tilde(i,a) += two_e_int_ia_f(n,m,i,a) * mos_array_basis_r2(n) * mos_array_basis_r1(m)
enddo
enddo
enddo
enddo
do a = 1, n_act_orb
do i = 1, n_inact_orb
f_ia_val_ab += v_tilde(i,a) * rho_tilde(i,a)
enddo
enddo
! multiply by two to adapt to the N(N-1) normalization condition of the active two-rdm
f_ia_val_ab *= 2.d0
two_bod_dens *= 2.d0
end
subroutine give_f_aa_val_ab(r1,r2,f_aa_val_ab,two_bod_dens,istate)
BEGIN_DOC
! contribution from purely active orbitals to f_{\Psi^B}(r_1,r_2) for the "istate" state of a CAS wave function
END_DOC
implicit none
integer, intent(in) :: istate
double precision, intent(in) :: r1(3),r2(3)
double precision, intent(out):: f_aa_val_ab,two_bod_dens
integer :: i,orb_i,a,orb_a,n,m,b,c,d
double precision :: rho
double precision, allocatable :: mos_array_r1(:) , mos_array_r2(:)
double precision, allocatable :: mos_array_basis_r1(:),mos_array_basis_r2(:)
double precision, allocatable :: mos_array_act_r1(:),mos_array_act_r2(:)
double precision, allocatable :: integrals_array(:,:),rho_tilde(:,:),v_tilde(:,:)
f_aa_val_ab = 0.d0
two_bod_dens = 0.d0
! You get all orbitals in r_1 and r_2
allocate(mos_array_r1(mo_num) , mos_array_r2(mo_num) )
call give_all_mos_at_r(r1,mos_array_r1)
call give_all_mos_at_r(r2,mos_array_r2)
! You extract the active orbitals
allocate( mos_array_act_r1(n_basis_orb) , mos_array_act_r2(n_basis_orb) )
do i= 1, n_act_orb
mos_array_act_r1(i) = mos_array_r1(list_act(i))
enddo
do i= 1, n_act_orb
mos_array_act_r2(i) = mos_array_r2(list_act(i))
enddo
! You extract the orbitals belonging to the space \mathcal{B}
allocate( mos_array_basis_r1(n_basis_orb) , mos_array_basis_r2(n_basis_orb) )
do i= 1, n_basis_orb
mos_array_basis_r1(i) = mos_array_r1(list_basis(i))
enddo
do i= 1, n_basis_orb
mos_array_basis_r2(i) = mos_array_r2(list_basis(i))
enddo
! Contracted density : intermediate quantity
! rho_tilde(i,a) = \sum_b rho(b,a) * phi_i(1) * phi_j(2)
allocate(rho_tilde(n_act_orb,n_act_orb))
two_bod_dens = 0.d0
rho_tilde = 0.d0
do a = 1, n_act_orb ! 1
do b = 1, n_act_orb ! 2
do c = 1, n_act_orb ! 1
do d = 1, n_act_orb ! 2
rho = mos_array_act_r1(c) * mos_array_act_r2(d) * act_2_rdm_ab_mo(d,c,b,a,istate)
rho_tilde(b,a) += rho
two_bod_dens += rho * mos_array_act_r1(a) * mos_array_act_r2(b)
enddo
enddo
enddo
enddo
! Contracted two-e integrals : intermediate quantity
! v_tilde(i,a) = \sum_{m,n} phi_m(1) * phi_n(2) < i a | m n >
allocate( v_tilde(n_act_orb,n_act_orb) )
v_tilde = 0.d0
do a = 1, n_act_orb
do b = 1, n_act_orb
v_tilde(b,a) = 0.d0
do m = 1, n_basis_orb
do n = 1, n_basis_orb
v_tilde(b,a) += two_e_int_aa_f(n,m,b,a) * mos_array_basis_r2(n) * mos_array_basis_r1(m)
enddo
enddo
enddo
enddo
do a = 1, n_act_orb
do b = 1, n_act_orb
f_aa_val_ab += v_tilde(b,a) * rho_tilde(b,a)
enddo
enddo
! DO NOT multiply by two as in give_f_ii_val_ab and give_f_ia_val_ab because the N(N-1) normalization condition of the active two-rdm
end
BEGIN_PROVIDER [double precision, two_e_int_aa_f, (n_basis_orb,n_basis_orb,n_act_orb,n_act_orb)]
implicit none
BEGIN_DOC
! list of two-electron integrals (built with the MOs belonging to the \mathcal{B} space)
!
! needed to compute the function f_{ii}(r_1,r_2)
!
! two_e_int_aa_f(j,i,n,m) = < j i | n m > where all orbitals belong to "list_basis"
END_DOC
integer :: orb_i,orb_j,i,j,orb_m,orb_n,m,n
double precision :: integrals_array(mo_num,mo_num),get_two_e_integral
PROVIDE mo_two_e_integrals_in_map mo_integrals_map big_array_exchange_integrals
do orb_m = 1, n_act_orb ! electron 1
m = list_act(orb_m)
do orb_n = 1, n_act_orb ! electron 2
n = list_act(orb_n)
call get_mo_two_e_integrals_ij(m,n,mo_num,integrals_array,mo_integrals_map)
do orb_i = 1, n_basis_orb ! electron 1
i = list_basis(orb_i)
do orb_j = 1, n_basis_orb ! electron 2
j = list_basis(orb_j)
! 2 1 2 1
two_e_int_aa_f(orb_j,orb_i,orb_n,orb_m) = get_two_e_integral(m,n,i,j,mo_integrals_map)
! two_e_int_aa_f(orb_j,orb_i,orb_n,orb_m) = integrals_array(j,i)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, two_e_int_ia_f, (n_basis_orb,n_basis_orb,n_inact_orb,n_act_orb)]
implicit none
BEGIN_DOC
! list of two-electron integrals (built with the MOs belonging to the \mathcal{B} space)
!
! needed to compute the function f_{ia}(r_1,r_2)
!
! two_e_int_aa_f(j,i,n,m) = < j i | n m > where all orbitals belong to "list_basis"
END_DOC
integer :: orb_i,orb_j,i,j,orb_m,orb_n,m,n
double precision :: integrals_array(mo_num,mo_num),get_two_e_integral
PROVIDE mo_two_e_integrals_in_map mo_integrals_map big_array_exchange_integrals
do orb_m = 1, n_act_orb ! electron 1
m = list_act(orb_m)
do orb_n = 1, n_inact_orb ! electron 2
n = list_inact(orb_n)
call get_mo_two_e_integrals_ij(m,n,mo_num,integrals_array,mo_integrals_map)
do orb_i = 1, n_basis_orb ! electron 1
i = list_basis(orb_i)
do orb_j = 1, n_basis_orb ! electron 2
j = list_basis(orb_j)
! 2 1 2 1
! two_e_int_ia_f(orb_j,orb_i,orb_n,orb_m) = get_two_e_integral(m,n,i,j,mo_integrals_map)
two_e_int_ia_f(orb_j,orb_i,orb_n,orb_m) = integrals_array(j,i)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, two_e_int_ii_f, (n_basis_orb,n_basis_orb,n_inact_orb,n_inact_orb)]
implicit none
BEGIN_DOC
! list of two-electron integrals (built with the MOs belonging to the \mathcal{B} space)
!
! needed to compute the function f_{ii}(r_1,r_2)
!
! two_e_int_ii_f(j,i,n,m) = < j i | n m > where all orbitals belong to "list_basis"
END_DOC
integer :: orb_i,orb_j,i,j,orb_m,orb_n,m,n
double precision :: get_two_e_integral,integrals_array(mo_num,mo_num)
PROVIDE mo_two_e_integrals_in_map mo_integrals_map big_array_exchange_integrals
do orb_m = 1, n_inact_orb ! electron 1
m = list_inact(orb_m)
do orb_n = 1, n_inact_orb ! electron 2
n = list_inact(orb_n)
call get_mo_two_e_integrals_ij(m,n,mo_num,integrals_array,mo_integrals_map)
do orb_i = 1, n_basis_orb ! electron 1
i = list_basis(orb_i)
do orb_j = 1, n_basis_orb ! electron 2
j = list_basis(orb_j)
! 2 1 2 1
! two_e_int_ii_f(orb_j,orb_i,orb_n,orb_m) = get_two_e_integral(m,n,i,j,mo_integrals_map)
two_e_int_ii_f(orb_j,orb_i,orb_n,orb_m) = integrals_array(j,i)
enddo
enddo
enddo
enddo
END_PROVIDER
subroutine give_mu_of_r_cas(r,istate,mu_of_r,f_psi,n2_psi)
implicit none
BEGIN_DOC
! returns mu(r), f_psi, n2_psi for a general cas wave function
END_DOC
integer, intent(in) :: istate
double precision, intent(in) :: r(3)
double precision, intent(out) :: mu_of_r,f_psi,n2_psi
double precision :: f_ii_val_ab,two_bod_dens_ii
double precision :: f_ia_val_ab,two_bod_dens_ia
double precision :: f_aa_val_ab,two_bod_dens_aa
double precision :: sqpi,w_psi
sqpi = dsqrt(dacos(-1.d0))
! inactive-inactive part of f_psi(r1,r2)
call give_f_ii_val_ab(r,r,f_ii_val_ab,two_bod_dens_ii)
! inactive-active part of f_psi(r1,r2)
call give_f_ia_val_ab(r,r,f_ia_val_ab,two_bod_dens_ia,istate)
! active-active part of f_psi(r1,r2)
call give_f_aa_val_ab(r,r,f_aa_val_ab,two_bod_dens_aa,istate)
f_psi = f_ii_val_ab + f_ia_val_ab + f_aa_val_ab
n2_psi = two_bod_dens_ii + two_bod_dens_ia + two_bod_dens_aa
if(n2_psi.le.1.d-12.or.f_psi.le.0.d0.or.f_psi * n2_psi.lt.0.d0)then
w_psi = 1.d+10
else
w_psi = f_psi / n2_psi
endif
mu_of_r = w_psi * sqpi * 0.5d0
end