mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-09-10 18:04:45 +02:00
517 lines
16 KiB
Fortran
517 lines
16 KiB
Fortran
BEGIN_PROVIDER [ double precision, psi_energy_two_e, (N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Energy of the current wave function
|
|
END_DOC
|
|
integer :: i,j
|
|
call u_0_H_u_0_two_e(psi_energy_two_e,psi_coef,N_det,psi_det,N_int,N_states,psi_det_size)
|
|
do i=N_det+1,N_states
|
|
psi_energy_two_e(i) = 0.d0
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
|
|
subroutine H_S2_u_0_two_e_nstates_openmp(v_0,s_0,u_0,N_st,sze)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Computes $v_0 = H | u_0\rangle$ and $s_0 = S^2 | u_0\rangle$
|
|
!
|
|
! Assumes that the determinants are in psi_det
|
|
!
|
|
! istart, iend, ishift, istep are used in ZMQ parallelization.
|
|
END_DOC
|
|
integer, intent(in) :: N_st,sze
|
|
double precision, intent(inout) :: v_0(sze,N_st), s_0(sze,N_st), u_0(sze,N_st)
|
|
integer :: k
|
|
double precision, allocatable :: u_t(:,:), v_t(:,:), s_t(:,:)
|
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
|
|
allocate(u_t(N_st,N_det),v_t(N_st,N_det),s_t(N_st,N_det))
|
|
do k=1,N_st
|
|
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
|
|
enddo
|
|
v_t = 0.d0
|
|
s_t = 0.d0
|
|
call dtranspose( &
|
|
u_0, &
|
|
size(u_0, 1), &
|
|
u_t, &
|
|
size(u_t, 1), &
|
|
N_det, N_st)
|
|
|
|
call H_S2_u_0_two_e_nstates_openmp_work(v_t,s_t,u_t,N_st,sze,1,N_det,0,1)
|
|
deallocate(u_t)
|
|
|
|
call dtranspose( &
|
|
v_t, &
|
|
size(v_t, 1), &
|
|
v_0, &
|
|
size(v_0, 1), &
|
|
N_st, N_det)
|
|
call dtranspose( &
|
|
s_t, &
|
|
size(s_t, 1), &
|
|
s_0, &
|
|
size(s_0, 1), &
|
|
N_st, N_det)
|
|
deallocate(v_t,s_t)
|
|
|
|
do k=1,N_st
|
|
call dset_order(v_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
|
call dset_order(s_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
|
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
|
enddo
|
|
|
|
end
|
|
|
|
|
|
subroutine H_S2_u_0_two_e_nstates_openmp_work(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Computes $v_t = H | u_t\rangle$ and $s_t = S^2 | u_t\rangle$
|
|
!
|
|
! Default should be 1,N_det,0,1
|
|
END_DOC
|
|
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
|
double precision, intent(in) :: u_t(N_st,N_det)
|
|
double precision, intent(out) :: v_t(N_st,sze), s_t(N_st,sze)
|
|
|
|
|
|
PROVIDE ref_bitmask_energy N_int
|
|
|
|
select case (N_int)
|
|
case (1)
|
|
call H_S2_u_0_two_e_nstates_openmp_work_1(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
case (2)
|
|
call H_S2_u_0_two_e_nstates_openmp_work_2(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
case (3)
|
|
call H_S2_u_0_two_e_nstates_openmp_work_3(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
case (4)
|
|
call H_S2_u_0_two_e_nstates_openmp_work_4(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
case default
|
|
call H_S2_u_0_two_e_nstates_openmp_work_N_int(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
end select
|
|
end
|
|
BEGIN_TEMPLATE
|
|
|
|
subroutine H_S2_u_0_two_e_nstates_openmp_work_$N_int(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Computes $v_t = H | u_t \\rangle$ and $s_t = S^2 | u_t \\rangle$
|
|
!
|
|
! Default should be 1,N_det,0,1
|
|
END_DOC
|
|
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
|
double precision, intent(in) :: u_t(N_st,N_det)
|
|
double precision, intent(out) :: v_t(N_st,sze), s_t(N_st,sze)
|
|
|
|
double precision :: hij, sij
|
|
integer :: i,j,k,l
|
|
integer :: k_a, k_b, l_a, l_b, m_a, m_b
|
|
integer :: istate
|
|
integer :: krow, kcol, krow_b, kcol_b
|
|
integer :: lrow, lcol
|
|
integer :: mrow, mcol
|
|
integer(bit_kind) :: spindet($N_int)
|
|
integer(bit_kind) :: tmp_det($N_int,2)
|
|
integer(bit_kind) :: tmp_det2($N_int,2)
|
|
integer(bit_kind) :: tmp_det3($N_int,2)
|
|
integer(bit_kind), allocatable :: buffer(:,:)
|
|
integer :: n_doubles
|
|
integer, allocatable :: doubles(:)
|
|
integer, allocatable :: singles_a(:)
|
|
integer, allocatable :: singles_b(:)
|
|
integer, allocatable :: idx(:), idx0(:)
|
|
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
|
|
integer*8 :: k8
|
|
|
|
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
|
allocate(idx0(maxab))
|
|
|
|
do i=1,maxab
|
|
idx0(i) = i
|
|
enddo
|
|
|
|
! Prepare the array of all alpha single excitations
|
|
! -------------------------------------------------
|
|
|
|
PROVIDE N_int nthreads_davidson
|
|
!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) &
|
|
!$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
|
|
!$OMP psi_bilinear_matrix_columns, &
|
|
!$OMP psi_det_alpha_unique, psi_det_beta_unique, &
|
|
!$OMP n_det_alpha_unique, n_det_beta_unique, N_int, &
|
|
!$OMP psi_bilinear_matrix_transp_rows, &
|
|
!$OMP psi_bilinear_matrix_transp_columns, &
|
|
!$OMP psi_bilinear_matrix_transp_order, N_st, &
|
|
!$OMP psi_bilinear_matrix_order_transp_reverse, &
|
|
!$OMP psi_bilinear_matrix_columns_loc, &
|
|
!$OMP psi_bilinear_matrix_transp_rows_loc, &
|
|
!$OMP istart, iend, istep, irp_here, v_t, s_t, &
|
|
!$OMP ishift, idx0, u_t, maxab) &
|
|
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, &
|
|
!$OMP lcol, lrow, l_a, l_b, &
|
|
!$OMP buffer, doubles, n_doubles, &
|
|
!$OMP tmp_det2, hij, sij, idx, l, kcol_prev, &
|
|
!$OMP singles_a, n_singles_a, singles_b, &
|
|
!$OMP n_singles_b, k8)
|
|
|
|
! Alpha/Beta double excitations
|
|
! =============================
|
|
|
|
allocate( buffer($N_int,maxab), &
|
|
singles_a(maxab), &
|
|
singles_b(maxab), &
|
|
doubles(maxab), &
|
|
idx(maxab))
|
|
|
|
kcol_prev=-1
|
|
|
|
ASSERT (iend <= N_det)
|
|
ASSERT (istart > 0)
|
|
ASSERT (istep > 0)
|
|
|
|
!$OMP DO SCHEDULE(dynamic,64)
|
|
do k_a=istart+ishift,iend,istep
|
|
|
|
krow = psi_bilinear_matrix_rows(k_a)
|
|
ASSERT (krow <= N_det_alpha_unique)
|
|
|
|
kcol = psi_bilinear_matrix_columns(k_a)
|
|
ASSERT (kcol <= N_det_beta_unique)
|
|
|
|
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
|
|
if (kcol /= kcol_prev) then
|
|
call get_all_spin_singles_$N_int( &
|
|
psi_det_beta_unique, idx0, &
|
|
tmp_det(1,2), N_det_beta_unique, &
|
|
singles_b, n_singles_b)
|
|
endif
|
|
kcol_prev = kcol
|
|
|
|
! Loop over singly excited beta columns
|
|
! -------------------------------------
|
|
|
|
do i=1,n_singles_b
|
|
lcol = singles_b(i)
|
|
|
|
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
|
|
|
|
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
|
ASSERT (l_a <= N_det)
|
|
|
|
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
|
|
lrow = psi_bilinear_matrix_rows(l_a)
|
|
ASSERT (lrow <= N_det_alpha_unique)
|
|
|
|
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
|
|
|
|
ASSERT (l_a <= N_det)
|
|
idx(j) = l_a
|
|
l_a = l_a+1
|
|
enddo
|
|
j = j-1
|
|
|
|
call get_all_spin_singles_$N_int( &
|
|
buffer, idx, tmp_det(1,1), j, &
|
|
singles_a, n_singles_a )
|
|
|
|
! Loop over alpha singles
|
|
! -----------------------
|
|
|
|
do k = 1,n_singles_a
|
|
l_a = singles_a(k)
|
|
ASSERT (l_a <= N_det)
|
|
|
|
lrow = psi_bilinear_matrix_rows(l_a)
|
|
ASSERT (lrow <= N_det_alpha_unique)
|
|
|
|
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
|
call i_H_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij)
|
|
call get_s2(tmp_det,tmp_det2,$N_int,sij)
|
|
do l=1,N_st
|
|
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
|
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,l_a)
|
|
enddo
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
!$OMP DO SCHEDULE(dynamic,64)
|
|
do k_a=istart+ishift,iend,istep
|
|
|
|
|
|
! Single and double alpha excitations
|
|
! ===================================
|
|
|
|
|
|
! Initial determinant is at k_a in alpha-major representation
|
|
! -----------------------------------------------------------------------
|
|
|
|
krow = psi_bilinear_matrix_rows(k_a)
|
|
ASSERT (krow <= N_det_alpha_unique)
|
|
|
|
kcol = psi_bilinear_matrix_columns(k_a)
|
|
ASSERT (kcol <= N_det_beta_unique)
|
|
|
|
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
|
|
! Initial determinant is at k_b in beta-major representation
|
|
! ----------------------------------------------------------------------
|
|
|
|
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
|
ASSERT (k_b <= N_det)
|
|
|
|
spindet(1:$N_int) = tmp_det(1:$N_int,1)
|
|
|
|
! Loop inside the beta column to gather all the connected alphas
|
|
lcol = psi_bilinear_matrix_columns(k_a)
|
|
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
|
do i=1,N_det_alpha_unique
|
|
if (l_a > N_det) exit
|
|
lcol = psi_bilinear_matrix_columns(l_a)
|
|
if (lcol /= kcol) exit
|
|
lrow = psi_bilinear_matrix_rows(l_a)
|
|
ASSERT (lrow <= N_det_alpha_unique)
|
|
|
|
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
|
|
idx(i) = l_a
|
|
l_a = l_a+1
|
|
enddo
|
|
i = i-1
|
|
|
|
call get_all_spin_singles_and_doubles_$N_int( &
|
|
buffer, idx, spindet, i, &
|
|
singles_a, doubles, n_singles_a, n_doubles )
|
|
|
|
! Compute Hij for all alpha singles
|
|
! ----------------------------------
|
|
|
|
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
do i=1,n_singles_a
|
|
l_a = singles_a(i)
|
|
ASSERT (l_a <= N_det)
|
|
|
|
lrow = psi_bilinear_matrix_rows(l_a)
|
|
ASSERT (lrow <= N_det_alpha_unique)
|
|
|
|
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
|
call i_Wee_j_single( tmp_det, tmp_det2, $N_int, 1, hij)
|
|
|
|
do l=1,N_st
|
|
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
|
! single => sij = 0
|
|
enddo
|
|
enddo
|
|
|
|
|
|
! Compute Hij for all alpha doubles
|
|
! ----------------------------------
|
|
|
|
do i=1,n_doubles
|
|
l_a = doubles(i)
|
|
ASSERT (l_a <= N_det)
|
|
|
|
lrow = psi_bilinear_matrix_rows(l_a)
|
|
ASSERT (lrow <= N_det_alpha_unique)
|
|
|
|
call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
|
|
do l=1,N_st
|
|
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
|
! same spin => sij = 0
|
|
enddo
|
|
enddo
|
|
|
|
|
|
! Single and double beta excitations
|
|
! ==================================
|
|
|
|
|
|
! Initial determinant is at k_a in alpha-major representation
|
|
! -----------------------------------------------------------------------
|
|
|
|
krow = psi_bilinear_matrix_rows(k_a)
|
|
kcol = psi_bilinear_matrix_columns(k_a)
|
|
|
|
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
|
|
spindet(1:$N_int) = tmp_det(1:$N_int,2)
|
|
|
|
! Initial determinant is at k_b in beta-major representation
|
|
! -----------------------------------------------------------------------
|
|
|
|
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
|
ASSERT (k_b <= N_det)
|
|
|
|
! Loop inside the alpha row to gather all the connected betas
|
|
lrow = psi_bilinear_matrix_transp_rows(k_b)
|
|
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
|
|
do i=1,N_det_beta_unique
|
|
if (l_b > N_det) exit
|
|
lrow = psi_bilinear_matrix_transp_rows(l_b)
|
|
if (lrow /= krow) exit
|
|
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
|
ASSERT (lcol <= N_det_beta_unique)
|
|
|
|
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
|
|
idx(i) = l_b
|
|
l_b = l_b+1
|
|
enddo
|
|
i = i-1
|
|
|
|
call get_all_spin_singles_and_doubles_$N_int( &
|
|
buffer, idx, spindet, i, &
|
|
singles_b, doubles, n_singles_b, n_doubles )
|
|
|
|
! Compute Hij for all beta singles
|
|
! ----------------------------------
|
|
|
|
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
do i=1,n_singles_b
|
|
l_b = singles_b(i)
|
|
ASSERT (l_b <= N_det)
|
|
|
|
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
|
ASSERT (lcol <= N_det_beta_unique)
|
|
|
|
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
|
|
call i_Wee_j_single( tmp_det, tmp_det2, $N_int, 2, hij)
|
|
l_a = psi_bilinear_matrix_transp_order(l_b)
|
|
ASSERT (l_a <= N_det)
|
|
do l=1,N_st
|
|
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
|
! single => sij = 0
|
|
enddo
|
|
enddo
|
|
|
|
! Compute Hij for all beta doubles
|
|
! ----------------------------------
|
|
|
|
do i=1,n_doubles
|
|
l_b = doubles(i)
|
|
ASSERT (l_b <= N_det)
|
|
|
|
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
|
ASSERT (lcol <= N_det_beta_unique)
|
|
|
|
call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
|
|
l_a = psi_bilinear_matrix_transp_order(l_b)
|
|
ASSERT (l_a <= N_det)
|
|
|
|
do l=1,N_st
|
|
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
|
! same spin => sij = 0
|
|
enddo
|
|
enddo
|
|
|
|
|
|
! Diagonal contribution
|
|
! =====================
|
|
|
|
|
|
! Initial determinant is at k_a in alpha-major representation
|
|
! -----------------------------------------------------------------------
|
|
|
|
krow = psi_bilinear_matrix_rows(k_a)
|
|
ASSERT (krow <= N_det_alpha_unique)
|
|
|
|
kcol = psi_bilinear_matrix_columns(k_a)
|
|
ASSERT (kcol <= N_det_beta_unique)
|
|
|
|
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
|
|
double precision, external :: diag_wee_mat_elem, diag_S_mat_elem
|
|
|
|
hij = diag_wee_mat_elem(tmp_det,$N_int)
|
|
sij = diag_S_mat_elem(tmp_det,$N_int)
|
|
do l=1,N_st
|
|
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a)
|
|
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,k_a)
|
|
enddo
|
|
|
|
end do
|
|
!$OMP END DO
|
|
deallocate(buffer, singles_a, singles_b, doubles, idx)
|
|
!$OMP END PARALLEL
|
|
|
|
end
|
|
|
|
SUBST [ N_int ]
|
|
|
|
1;;
|
|
2;;
|
|
3;;
|
|
4;;
|
|
N_int;;
|
|
|
|
END_TEMPLATE
|
|
|
|
|
|
subroutine u_0_H_u_0_two_e(e_0,u_0,n,keys_tmp,Nint,N_st,sze)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Computes $E_0 = \frac{ \langle u_0 | H | u_0\rangle}{\langle u_0 | u_0 \rangle}$.
|
|
!
|
|
! n : number of determinants
|
|
!
|
|
END_DOC
|
|
integer, intent(in) :: n,Nint, N_st, sze
|
|
double precision, intent(out) :: e_0(N_st)
|
|
double precision, intent(inout) :: u_0(sze,N_st)
|
|
integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n)
|
|
|
|
double precision, allocatable :: v_0(:,:), s_0(:,:), u_1(:,:)
|
|
double precision :: u_dot_u,u_dot_v,diag_H_mat_elem
|
|
integer :: i,j
|
|
|
|
allocate (v_0(n,N_st),s_0(n,N_st),u_1(n,N_st))
|
|
u_1(1:n,:) = u_0(1:n,:)
|
|
call H_S2_u_0_two_e_nstates_openmp(v_0,s_0,u_1,N_st,n)
|
|
u_0(1:n,:) = u_1(1:n,:)
|
|
deallocate(u_1)
|
|
double precision :: norm
|
|
do i=1,N_st
|
|
norm = u_dot_u(u_0(1,i),n)
|
|
if (norm /= 0.d0) then
|
|
e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n)/u_dot_u(u_0(1,i),n)
|
|
else
|
|
e_0(i) = 0.d0
|
|
endif
|
|
enddo
|
|
deallocate (s_0, v_0)
|
|
end
|
|
|
|
BEGIN_PROVIDER [double precision, psi_energy_two_e_trans, (N_states, N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! psi_energy_two_e_trans(istate,jstate) = <Psi_istate|W_ee |Psi_jstate>
|
|
END_dOC
|
|
integer :: i,j,istate,jstate
|
|
double precision :: hij, coef_i, coef_j
|
|
psi_energy_two_e_trans = 0.d0
|
|
do i = 1, N_det
|
|
do j = 1, N_det
|
|
call i_H_j_two_e(psi_det(1,1,i),psi_det(1,1,j),N_int,hij)
|
|
do istate = 1, N_states
|
|
coef_i = psi_coef(i,istate)
|
|
do jstate = 1, N_states
|
|
coef_j = psi_coef(j,jstate)
|
|
psi_energy_two_e_trans(jstate,istate) += coef_i * coef_j * hij
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|