mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-09-11 02:14:45 +02:00
569 lines
17 KiB
Fortran
569 lines
17 KiB
Fortran
subroutine davidson_diag_h_csf(dets_in,u_in,dim_in,energies,sze,sze_csf,N_st,N_st_diag,Nint,dressing_state,converged)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Davidson diagonalization.
|
|
!
|
|
! dets_in : bitmasks corresponding to determinants
|
|
!
|
|
! u_in : guess coefficients on the various states. Overwritten
|
|
! on exit
|
|
!
|
|
! dim_in : leftmost dimension of u_in
|
|
!
|
|
! sze : Number of determinants
|
|
!
|
|
! N_st : Number of eigenstates
|
|
!
|
|
END_DOC
|
|
integer, intent(in) :: dim_in, sze, sze_csf, N_st, N_st_diag, Nint
|
|
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
|
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
|
|
double precision, intent(out) :: energies(N_st_diag)
|
|
integer, intent(in) :: dressing_state
|
|
logical, intent(out) :: converged
|
|
double precision, allocatable :: H_jj(:)
|
|
|
|
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
|
|
integer :: i,k
|
|
ASSERT (N_st > 0)
|
|
ASSERT (sze > 0)
|
|
ASSERT (Nint > 0)
|
|
ASSERT (Nint == N_int)
|
|
PROVIDE mo_two_e_integrals_in_map
|
|
allocate(H_jj(sze))
|
|
|
|
H_jj(1) = diag_h_mat_elem(dets_in(1,1,1),Nint)
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
!$OMP SHARED(sze,H_jj, dets_in,Nint) &
|
|
!$OMP PRIVATE(i)
|
|
!$OMP DO SCHEDULE(static)
|
|
do i=2,sze
|
|
H_jj(i) = diag_H_mat_elem(dets_in(1,1,i),Nint)
|
|
enddo
|
|
!$OMP END DO
|
|
!$OMP END PARALLEL
|
|
|
|
if (dressing_state > 0) then
|
|
do k=1,N_st
|
|
do i=1,sze
|
|
H_jj(i) += u_in(i,k) * dressing_column_h(i,k)
|
|
enddo
|
|
enddo
|
|
endif
|
|
|
|
call davidson_diag_csf_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N_st,N_st_diag,Nint,dressing_state,converged)
|
|
deallocate(H_jj)
|
|
end
|
|
|
|
|
|
subroutine davidson_diag_csf_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N_st,N_st_diag_in,Nint,dressing_state,converged)
|
|
use bitmasks
|
|
use mmap_module
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Davidson diagonalization with specific diagonal elements of the H matrix
|
|
!
|
|
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
|
!
|
|
! dets_in : bitmasks corresponding to determinants
|
|
!
|
|
! u_in : guess coefficients on the various states. Overwritten
|
|
! on exit
|
|
!
|
|
! dim_in : leftmost dimension of u_in
|
|
!
|
|
! sze : Number of determinants
|
|
!
|
|
! N_st : Number of eigenstates
|
|
!
|
|
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze
|
|
!
|
|
END_DOC
|
|
integer, intent(in) :: dim_in, sze, sze_csf, N_st, N_st_diag_in, Nint
|
|
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
|
double precision, intent(in) :: H_jj(sze)
|
|
integer, intent(in) :: dressing_state
|
|
double precision, intent(inout) :: u_in(dim_in,N_st_diag_in)
|
|
double precision, intent(out) :: energies(N_st_diag_in)
|
|
|
|
integer :: iter, N_st_diag
|
|
integer :: i,j,k,l,m
|
|
logical, intent(inout) :: converged
|
|
|
|
double precision, external :: u_dot_v, u_dot_u
|
|
|
|
integer :: k_pairs, kl
|
|
|
|
integer :: iter2, itertot
|
|
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
|
double precision, allocatable :: s_tmp(:,:)
|
|
double precision :: diag_h_mat_elem
|
|
double precision, allocatable :: residual_norm(:)
|
|
character*(16384) :: write_buffer
|
|
double precision :: to_print(2,N_st)
|
|
double precision :: cpu, wall
|
|
integer :: shift, shift2, itermax, istate
|
|
double precision :: r1, r2, alpha
|
|
logical :: state_ok(N_st_diag_in*davidson_sze_max)
|
|
integer :: nproc_target
|
|
integer :: order(N_st_diag_in)
|
|
double precision :: cmax
|
|
double precision, allocatable :: U(:,:), U_csf(:,:), overlap(:,:)
|
|
double precision, pointer :: W(:,:), W_csf(:,:)
|
|
logical :: disk_based
|
|
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
|
|
|
|
include 'constants.include.F'
|
|
|
|
N_st_diag = N_st_diag_in
|
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
|
|
if (N_st_diag*3 > sze) then
|
|
print *, 'error in Davidson :'
|
|
print *, 'Increase n_det_max_full to ', N_st_diag*3
|
|
stop -1
|
|
endif
|
|
|
|
itermax = max(2,min(davidson_sze_max, sze/N_st_diag))+1
|
|
itertot = 0
|
|
|
|
if (state_following) then
|
|
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
|
|
else
|
|
allocate(overlap(1,1)) ! avoid 'if' for deallocate
|
|
endif
|
|
overlap = 0.d0
|
|
|
|
PROVIDE nuclear_repulsion expected_s2 psi_bilinear_matrix_order psi_bilinear_matrix_order_reverse threshold_davidson_pt2 threshold_davidson_from_pt2
|
|
|
|
call write_time(6)
|
|
write(6,'(A)') ''
|
|
write(6,'(A)') 'Davidson Diagonalization'
|
|
write(6,'(A)') '------------------------'
|
|
write(6,'(A)') ''
|
|
|
|
! Find max number of cores to fit in memory
|
|
! -----------------------------------------
|
|
|
|
nproc_target = nproc
|
|
double precision :: rss
|
|
integer :: maxab
|
|
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
|
|
|
m=1
|
|
disk_based = .False.
|
|
call resident_memory(rss)
|
|
do
|
|
r1 = 8.d0 * &! bytes
|
|
( dble(sze)*(N_st_diag) &! U
|
|
+ dble(sze_csf)*(N_st_diag*itermax) &! U_csf
|
|
+ dble(sze)*(N_st_diag) &! W
|
|
+ dble(sze_csf)*(N_st_diag*itermax) &! W_csf
|
|
+ 3.0d0*(N_st_diag*itermax)**2 &! h,y,s_tmp
|
|
+ 1.d0*(N_st_diag*itermax) &! lambda
|
|
+ 1.d0*(N_st_diag) &! residual_norm
|
|
! In H_u_0_nstates_zmq
|
|
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on collector
|
|
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on slave
|
|
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
|
|
+ nproc_target * &! In OMP section
|
|
( 1.d0*(N_int*maxab) &! buffer
|
|
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
|
) / 1024.d0**3
|
|
|
|
if (nproc_target == 0) then
|
|
call check_mem(r1,irp_here)
|
|
nproc_target = 1
|
|
exit
|
|
endif
|
|
|
|
if (r1+rss < qp_max_mem) then
|
|
exit
|
|
endif
|
|
|
|
if (itermax > 4) then
|
|
itermax = itermax - 1
|
|
else if (m==1.and.disk_based_davidson) then
|
|
m=0
|
|
disk_based = .True.
|
|
itermax = 6
|
|
else
|
|
nproc_target = nproc_target - 1
|
|
endif
|
|
|
|
enddo
|
|
nthreads_davidson = nproc_target
|
|
TOUCH nthreads_davidson
|
|
call write_int(6,N_st,'Number of states')
|
|
call write_int(6,N_st_diag,'Number of states in diagonalization')
|
|
call write_int(6,sze,'Number of determinants')
|
|
call write_int(6,sze_csf,'Number of CSFs')
|
|
call write_int(6,nproc_target,'Number of threads for diagonalization')
|
|
call write_double(6, r1, 'Memory(Gb)')
|
|
if (disk_based) then
|
|
print *, 'Using swap space to reduce RAM'
|
|
endif
|
|
|
|
!---------------
|
|
|
|
write(6,'(A)') ''
|
|
write_buffer = '====='
|
|
do i=1,N_st
|
|
write_buffer = trim(write_buffer)//' ================ ==========='
|
|
enddo
|
|
write(6,'(A)') write_buffer(1:6+41*N_st)
|
|
write_buffer = 'Iter'
|
|
do i=1,N_st
|
|
write_buffer = trim(write_buffer)//' Energy Residual '
|
|
enddo
|
|
write(6,'(A)') write_buffer(1:6+41*N_st)
|
|
write_buffer = '====='
|
|
do i=1,N_st
|
|
write_buffer = trim(write_buffer)//' ================ ==========='
|
|
enddo
|
|
write(6,'(A)') write_buffer(1:6+41*N_st)
|
|
|
|
|
|
if (disk_based) then
|
|
! Create memory-mapped files for W and S
|
|
type(c_ptr) :: ptr_w, ptr_s
|
|
integer :: fd_s, fd_w
|
|
call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),&
|
|
8, fd_w, .False., ptr_w)
|
|
call c_f_pointer(ptr_w, W_csf, (/sze_csf,N_st_diag*itermax/))
|
|
else
|
|
allocate(W(sze,N_st_diag),W_csf(sze_csf,N_st_diag*itermax))
|
|
endif
|
|
|
|
allocate( &
|
|
! Large
|
|
U(sze,N_st_diag), &
|
|
U_csf(sze_csf,N_st_diag*itermax), &
|
|
|
|
! Small
|
|
h(N_st_diag*itermax,N_st_diag*itermax), &
|
|
y(N_st_diag*itermax,N_st_diag*itermax), &
|
|
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
|
|
residual_norm(N_st_diag), &
|
|
lambda(N_st_diag*itermax))
|
|
|
|
h = 0.d0
|
|
U = 0.d0
|
|
y = 0.d0
|
|
s_tmp = 0.d0
|
|
|
|
|
|
ASSERT (N_st > 0)
|
|
ASSERT (N_st_diag >= N_st)
|
|
ASSERT (sze > 0)
|
|
ASSERT (Nint > 0)
|
|
ASSERT (Nint == N_int)
|
|
|
|
! Davidson iterations
|
|
! ===================
|
|
|
|
converged = .False.
|
|
|
|
do k=N_st+1,N_st_diag
|
|
do i=1,sze
|
|
call random_number(r1)
|
|
call random_number(r2)
|
|
r1 = dsqrt(-2.d0*dlog(r1))
|
|
r2 = dtwo_pi*r2
|
|
u_in(i,k) = r1*dcos(r2) * u_in(i,k-N_st)
|
|
enddo
|
|
u_in(k,k) = u_in(k,k) + 10.d0
|
|
enddo
|
|
do k=1,N_st_diag
|
|
call normalize(u_in(1,k),sze)
|
|
enddo
|
|
|
|
do k=1,N_st_diag
|
|
do i=1,sze
|
|
U(i,k) = u_in(i,k)
|
|
enddo
|
|
enddo
|
|
|
|
! Make random verctors eigenstates of S2
|
|
call convertWFfromDETtoCSF(N_st_diag,U(1,1),U_csf(1,1))
|
|
call convertWFfromCSFtoDET(N_st_diag,U_csf(1,1),U(1,1))
|
|
|
|
do while (.not.converged)
|
|
itertot = itertot+1
|
|
if (itertot == 8) then
|
|
exit
|
|
endif
|
|
|
|
do iter=1,itermax-1
|
|
|
|
shift = N_st_diag*(iter-1)
|
|
shift2 = N_st_diag*iter
|
|
|
|
! if ((iter > 1).or.(itertot == 1)) then
|
|
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
|
! -----------------------------------
|
|
|
|
call convertWFfromCSFtoDET(N_st_diag,U_csf(1,shift+1),U)
|
|
if ((sze > 100000).and.distributed_davidson) then
|
|
call H_u_0_nstates_zmq (W,U,N_st_diag,sze)
|
|
else
|
|
call H_u_0_nstates_openmp(W,U,N_st_diag,sze)
|
|
endif
|
|
! else
|
|
! ! Already computed in update below
|
|
! continue
|
|
! endif
|
|
|
|
if (dressing_state > 0) then
|
|
|
|
if (N_st == 1) then
|
|
|
|
l = dressed_column_idx(1)
|
|
double precision :: f
|
|
f = 1.0d0/psi_coef(l,1)
|
|
do istate=1,N_st_diag
|
|
do i=1,sze
|
|
W(i,istate) += dressing_column_h(i,1) *f * U(l,istate)
|
|
W(l,istate) += dressing_column_h(i,1) *f * U(i,istate)
|
|
enddo
|
|
|
|
enddo
|
|
|
|
else
|
|
|
|
call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
|
|
psi_coef, size(psi_coef,1), &
|
|
U(1,1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
|
|
|
call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
|
|
dressing_column_h, size(dressing_column_h,1), s_tmp, size(s_tmp,1), &
|
|
1.d0, W(1,1), size(W,1))
|
|
|
|
|
|
call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
|
|
dressing_column_h, size(dressing_column_h,1), &
|
|
U(1,1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
|
|
|
call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
|
|
psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
|
|
1.d0, W(1,1), size(W,1))
|
|
|
|
endif
|
|
endif
|
|
|
|
call convertWFfromDETtoCSF(N_st_diag,W,W_csf(1,shift+1))
|
|
|
|
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
|
! -------------------------------------------
|
|
|
|
call dgemm('T','N', shift2, shift2, sze_csf, &
|
|
1.d0, U_csf, size(U_csf,1), W_csf, size(W_csf,1), &
|
|
0.d0, h, size(h,1))
|
|
call dgemm('T','N', shift2, shift2, sze_csf, &
|
|
1.d0, U_csf, size(U_csf,1), U_csf, size(U_csf,1), &
|
|
0.d0, s_tmp, size(s_tmp,1))
|
|
|
|
! Diagonalize h
|
|
! ---------------
|
|
|
|
integer :: lwork, info
|
|
double precision, allocatable :: work(:)
|
|
|
|
y = h
|
|
lwork = -1
|
|
allocate(work(1))
|
|
call dsygv(1,'V','U',shift2,y,size(y,1), &
|
|
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
|
|
lwork = int(work(1))
|
|
deallocate(work)
|
|
allocate(work(lwork))
|
|
call dsygv(1,'V','U',shift2,y,size(y,1), &
|
|
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
|
|
deallocate(work)
|
|
if (info /= 0) then
|
|
stop 'DSYGV Diagonalization failed'
|
|
endif
|
|
|
|
! Compute Energy for each eigenvector
|
|
! -----------------------------------
|
|
|
|
call dgemm('N','N',shift2,shift2,shift2, &
|
|
1.d0, h, size(h,1), y, size(y,1), &
|
|
0.d0, s_tmp, size(s_tmp,1))
|
|
|
|
call dgemm('T','N',shift2,shift2,shift2, &
|
|
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
|
|
0.d0, h, size(h,1))
|
|
|
|
do k=1,shift2
|
|
lambda(k) = h(k,k)
|
|
enddo
|
|
|
|
if (state_following) then
|
|
|
|
overlap = -1.d0
|
|
do i=1,shift2
|
|
do k=1,shift2
|
|
overlap(k,i) = dabs(y(k,i))
|
|
enddo
|
|
enddo
|
|
do k=1,N_st
|
|
cmax = -1.d0
|
|
do i=1,N_st
|
|
if (overlap(i,k) > cmax) then
|
|
cmax = overlap(i,k)
|
|
order(k) = i
|
|
endif
|
|
enddo
|
|
do i=1,N_st_diag
|
|
overlap(order(k),i) = -1.d0
|
|
enddo
|
|
enddo
|
|
overlap = y
|
|
do k=1,N_st
|
|
l = order(k)
|
|
if (k /= l) then
|
|
y(1:shift2,k) = overlap(1:shift2,l)
|
|
endif
|
|
enddo
|
|
do k=1,N_st
|
|
overlap(k,1) = lambda(k)
|
|
enddo
|
|
|
|
endif
|
|
|
|
|
|
! Express eigenvectors of h in the csf basis
|
|
! ------------------------------------------
|
|
|
|
call dgemm('N','N', sze_csf, N_st_diag, shift2, &
|
|
1.d0, U_csf, size(U_csf,1), y, size(y,1), 0.d0, U_csf(1,shift2+1), size(U_csf,1))
|
|
call convertWFfromCSFtoDET(N_st_diag,U_csf(1,shift2+1),U)
|
|
|
|
call dgemm('N','N', sze_csf, N_st_diag, shift2, &
|
|
1.d0, W_csf, size(W_csf,1), y, size(y,1), 0.d0, W_csf(1,shift2+1), size(W_csf,1))
|
|
call convertWFfromCSFtoDET(N_st_diag,W_csf(1,shift2+1),W)
|
|
|
|
! Compute residual vector and davidson step
|
|
! -----------------------------------------
|
|
|
|
if (without_diagonal) then
|
|
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
|
do k=1,N_st_diag
|
|
do i=1,sze
|
|
U(i,k) = (lambda(k) * U(i,k) - W(i,k) ) &
|
|
/max(H_jj(i) - lambda (k),1.d-2)
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
else
|
|
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
|
do k=1,N_st_diag
|
|
do i=1,sze
|
|
U(i,k) = (lambda(k) * U(i,k) - W(i,k) )
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
endif
|
|
|
|
do k=1,N_st
|
|
residual_norm(k) = u_dot_u(U(1,k),sze)
|
|
to_print(1,k) = lambda(k) + nuclear_repulsion
|
|
to_print(2,k) = residual_norm(k)
|
|
enddo
|
|
call convertWFfromDETtoCSF(N_st_diag,U,U_csf(1,shift2+1))
|
|
|
|
if ((itertot>1).and.(iter == 1)) then
|
|
!don't print
|
|
continue
|
|
else
|
|
write(*,'(1X,I3,1X,100(1X,F16.10,1X,ES11.3))') iter-1, to_print(1:2,1:N_st)
|
|
endif
|
|
|
|
! Check convergence
|
|
if (iter > 1) then
|
|
if (threshold_davidson_from_pt2) then
|
|
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson_pt2
|
|
else
|
|
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
|
|
endif
|
|
endif
|
|
|
|
do k=1,N_st
|
|
if (residual_norm(k) > 1.d8) then
|
|
print *, 'Davidson failed'
|
|
stop -1
|
|
endif
|
|
enddo
|
|
if (converged) then
|
|
exit
|
|
endif
|
|
|
|
logical, external :: qp_stop
|
|
if (qp_stop()) then
|
|
converged = .True.
|
|
exit
|
|
endif
|
|
|
|
|
|
enddo
|
|
|
|
! Re-contract U
|
|
! -------------
|
|
|
|
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
|
|
U_csf, size(U_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
|
do k=1,N_st_diag
|
|
do i=1,sze_csf
|
|
U_csf(i,k) = u_in(i,k)
|
|
enddo
|
|
enddo
|
|
call convertWFfromCSFtoDET(N_st_diag,U_csf,U)
|
|
|
|
enddo
|
|
|
|
|
|
call nullify_small_elements(sze,N_st_diag,U,size(U,1),threshold_davidson_pt2)
|
|
do k=1,N_st_diag
|
|
do i=1,sze
|
|
u_in(i,k) = U(i,k)
|
|
enddo
|
|
enddo
|
|
|
|
do k=1,N_st_diag
|
|
energies(k) = lambda(k)
|
|
enddo
|
|
write_buffer = '======'
|
|
do i=1,N_st
|
|
write_buffer = trim(write_buffer)//' ================ ==========='
|
|
enddo
|
|
write(6,'(A)') trim(write_buffer)
|
|
write(6,'(A)') ''
|
|
call write_time(6)
|
|
|
|
if (disk_based)then
|
|
! Remove temp files
|
|
integer, external :: getUnitAndOpen
|
|
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w )
|
|
fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r')
|
|
close(fd_w,status='delete')
|
|
else
|
|
deallocate(W, W_csf)
|
|
endif
|
|
|
|
deallocate ( &
|
|
residual_norm, &
|
|
U, U_csf, overlap, &
|
|
h, y, s_tmp, &
|
|
lambda &
|
|
)
|
|
FREE nthreads_davidson
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|