mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-09 23:13:38 +01:00
1643 lines
52 KiB
Fortran
1643 lines
52 KiB
Fortran
use bitmasks
|
|
|
|
subroutine get_mask_phase(det1, pm, Nint)
|
|
use bitmasks
|
|
implicit none
|
|
integer, intent(in) :: Nint
|
|
integer(bit_kind), intent(in) :: det1(Nint,2)
|
|
integer(bit_kind), intent(out) :: pm(Nint,2)
|
|
integer(bit_kind) :: tmp1, tmp2
|
|
integer :: i
|
|
tmp1 = 0_8
|
|
tmp2 = 0_8
|
|
select case (Nint)
|
|
|
|
BEGIN_TEMPLATE
|
|
case ($Nint)
|
|
do i=1,$Nint
|
|
pm(i,1) = ieor(det1(i,1), shiftl(det1(i,1), 1))
|
|
pm(i,2) = ieor(det1(i,2), shiftl(det1(i,2), 1))
|
|
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 2))
|
|
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 2))
|
|
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 4))
|
|
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 4))
|
|
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 8))
|
|
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 8))
|
|
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 16))
|
|
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 16))
|
|
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 32))
|
|
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 32))
|
|
pm(i,1) = ieor(pm(i,1), tmp1)
|
|
pm(i,2) = ieor(pm(i,2), tmp2)
|
|
if(iand(popcnt(det1(i,1)), 1) == 1) tmp1 = not(tmp1)
|
|
if(iand(popcnt(det1(i,2)), 1) == 1) tmp2 = not(tmp2)
|
|
end do
|
|
SUBST [ Nint ]
|
|
1;;
|
|
2;;
|
|
3;;
|
|
4;;
|
|
END_TEMPLATE
|
|
case default
|
|
do i=1,Nint
|
|
pm(i,1) = ieor(det1(i,1), shiftl(det1(i,1), 1))
|
|
pm(i,2) = ieor(det1(i,2), shiftl(det1(i,2), 1))
|
|
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 2))
|
|
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 2))
|
|
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 4))
|
|
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 4))
|
|
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 8))
|
|
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 8))
|
|
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 16))
|
|
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 16))
|
|
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 32))
|
|
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 32))
|
|
pm(i,1) = ieor(pm(i,1), tmp1)
|
|
pm(i,2) = ieor(pm(i,2), tmp2)
|
|
if(iand(popcnt(det1(i,1)), 1) == 1) tmp1 = not(tmp1)
|
|
if(iand(popcnt(det1(i,2)), 1) == 1) tmp2 = not(tmp2)
|
|
end do
|
|
end select
|
|
|
|
end subroutine
|
|
|
|
|
|
subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset)
|
|
use bitmasks
|
|
use selection_types
|
|
implicit none
|
|
integer, intent(in) :: i_generator, subset, csubset
|
|
type(selection_buffer), intent(inout) :: b
|
|
type(pt2_type), intent(inout) :: pt2_data
|
|
integer :: k,l
|
|
double precision, intent(in) :: E0(N_states)
|
|
|
|
integer(bit_kind) :: hole_mask(N_int,2), particle_mask(N_int,2)
|
|
|
|
double precision, allocatable :: fock_diag_tmp(:,:)
|
|
|
|
if (csubset == 0) return
|
|
|
|
allocate(fock_diag_tmp(2,mo_num+1))
|
|
|
|
call build_fock_tmp(fock_diag_tmp,psi_det_generators(1,1,i_generator),N_int)
|
|
|
|
do k=1,N_int
|
|
hole_mask(k,1) = iand(generators_bitmask(k,1,s_hole), psi_det_generators(k,1,i_generator))
|
|
hole_mask(k,2) = iand(generators_bitmask(k,2,s_hole), psi_det_generators(k,2,i_generator))
|
|
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) )
|
|
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) )
|
|
enddo
|
|
if ((subset == 1).and.(sum(hole_mask(:,2)) == 0_bit_kind)) then
|
|
! No beta electron to excite
|
|
call select_singles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b)
|
|
endif
|
|
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b,subset,csubset)
|
|
deallocate(fock_diag_tmp)
|
|
end subroutine
|
|
|
|
|
|
double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2, Nint)
|
|
use bitmasks
|
|
implicit none
|
|
|
|
integer, intent(in) :: Nint
|
|
integer(bit_kind), intent(in) :: phasemask(Nint,2)
|
|
integer, intent(in) :: s1, s2, h1, h2, p1, p2
|
|
logical :: change
|
|
integer :: np
|
|
double precision, save :: res(0:1) = (/1d0, -1d0/)
|
|
|
|
integer :: h1_int, h2_int
|
|
integer :: p1_int, p2_int
|
|
integer :: h1_bit, h2_bit
|
|
integer :: p1_bit, p2_bit
|
|
h1_int = shiftr(h1-1,bit_kind_shift)+1
|
|
h1_bit = h1 - shiftl(h1_int-1,bit_kind_shift)-1
|
|
|
|
h2_int = shiftr(h2-1,bit_kind_shift)+1
|
|
h2_bit = h2 - shiftl(h2_int-1,bit_kind_shift)-1
|
|
|
|
p1_int = shiftr(p1-1,bit_kind_shift)+1
|
|
p1_bit = p1 - shiftl(p1_int-1,bit_kind_shift)-1
|
|
|
|
p2_int = shiftr(p2-1,bit_kind_shift)+1
|
|
p2_bit = p2 - shiftl(p2_int-1,bit_kind_shift)-1
|
|
|
|
|
|
! Put the phasemask bits at position 0, and add them all
|
|
h1_bit = int(shiftr(phasemask(h1_int,s1),h1_bit))
|
|
p1_bit = int(shiftr(phasemask(p1_int,s1),p1_bit))
|
|
h2_bit = int(shiftr(phasemask(h2_int,s2),h2_bit))
|
|
p2_bit = int(shiftr(phasemask(p2_int,s2),p2_bit))
|
|
|
|
np = h1_bit + p1_bit + h2_bit + p2_bit
|
|
|
|
if(p1 < h1) np = np + 1
|
|
if(p2 < h2) np = np + 1
|
|
|
|
if(s1 == s2 .and. max(h1, p1) > min(h2, p2)) np = np + 1
|
|
get_phase_bi = res(iand(np,1))
|
|
end
|
|
|
|
|
|
subroutine select_singles_and_doubles(i_generator, hole_mask, particle_mask, fock_diag_tmp, E0, pt2_data, buf, subset, csubset)
|
|
use bitmasks
|
|
use selection_types
|
|
implicit none
|
|
BEGIN_DOC
|
|
! WARNING /!\ : It is assumed that the generators and selectors are psi_det_sorted
|
|
END_DOC
|
|
|
|
integer, intent(in) :: i_generator, subset, csubset
|
|
integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2)
|
|
double precision, intent(in) :: fock_diag_tmp(mo_num)
|
|
double precision, intent(in) :: E0(N_states)
|
|
type(pt2_type), intent(inout) :: pt2_data
|
|
type(selection_buffer), intent(inout) :: buf
|
|
|
|
integer :: h1, h2, s1, s2, s3, i1, i2, ib, sp, k, i, j, nt, ii, sze
|
|
integer :: maskInd
|
|
integer :: N_holes(2), N_particles(2)
|
|
integer :: hole_list(N_int*bit_kind_size,2)
|
|
integer :: particle_list(N_int*bit_kind_size,2)
|
|
integer :: l_a, nmax, idx
|
|
integer :: nb_count, maskInd_save
|
|
integer(bit_kind) :: hole(N_int,2), particle(N_int,2), mask(N_int, 2), pmask(N_int, 2)
|
|
integer(bit_kind) :: mobMask(N_int, 2), negMask(N_int, 2)
|
|
logical :: fullMatch, ok
|
|
logical :: monoAdo, monoBdo
|
|
logical :: monoBdo_save
|
|
logical :: found
|
|
|
|
integer, allocatable :: preinteresting(:), prefullinteresting(:)
|
|
integer, allocatable :: interesting(:), fullinteresting(:)
|
|
integer, allocatable :: tmp_array(:)
|
|
|
|
integer, allocatable :: indices(:), exc_degree(:), iorder(:)
|
|
integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :)
|
|
logical, allocatable :: banned(:,:,:), bannedOrb(:,:)
|
|
double precision, allocatable :: coef_fullminilist_rev(:,:)
|
|
double precision, allocatable :: mat(:,:,:)
|
|
|
|
|
|
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
|
|
PROVIDE psi_bilinear_matrix_rows psi_bilinear_matrix_order psi_bilinear_matrix_transp_order
|
|
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
|
|
PROVIDE psi_selectors_coef_transp psi_det_sorted_order
|
|
PROVIDE banned_excitation
|
|
|
|
monoAdo = .true.
|
|
monoBdo = .true.
|
|
|
|
if (csubset == 0) return
|
|
|
|
do k=1,N_int
|
|
hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1))
|
|
hole (k,2) = iand(psi_det_generators(k,2,i_generator), hole_mask(k,2))
|
|
particle(k,1) = iand(not(psi_det_generators(k,1,i_generator)), particle_mask(k,1))
|
|
particle(k,2) = iand(not(psi_det_generators(k,2,i_generator)), particle_mask(k,2))
|
|
enddo
|
|
|
|
call bitstring_to_list_ab(hole , hole_list , N_holes , N_int)
|
|
call bitstring_to_list_ab(particle, particle_list, N_particles, N_int)
|
|
|
|
! Removed to avoid introducing determinants already presents in the wf
|
|
!double precision, parameter :: norm_thr = 1.d-16
|
|
|
|
allocate (indices(N_det), &
|
|
exc_degree(max(N_det_alpha_unique,N_det_beta_unique)))
|
|
|
|
! Pre-compute excitation degrees wrt alpha determinants
|
|
k=1
|
|
do i=1,N_det_alpha_unique
|
|
call get_excitation_degree_spin(psi_det_alpha_unique(1,i), &
|
|
psi_det_generators(1,1,i_generator), exc_degree(i), N_int)
|
|
enddo
|
|
|
|
! Iterate on 0SD beta, and find alphas 0SDTQ such that exc_degree <= 4
|
|
do j=1,N_det_beta_unique
|
|
call get_excitation_degree_spin(psi_det_beta_unique(1,j), &
|
|
psi_det_generators(1,2,i_generator), nt, N_int)
|
|
if (nt > 2) cycle
|
|
do l_a=psi_bilinear_matrix_columns_loc(j), psi_bilinear_matrix_columns_loc(j+1)-1
|
|
i = psi_bilinear_matrix_rows(l_a)
|
|
if (nt + exc_degree(i) <= 4) then
|
|
idx = psi_det_sorted_order(psi_bilinear_matrix_order(l_a))
|
|
! Removed to avoid introducing determinants already presents in the wf
|
|
!if (psi_average_norm_contrib_sorted(idx) > norm_thr) then
|
|
indices(k) = idx
|
|
k=k+1
|
|
!endif
|
|
endif
|
|
enddo
|
|
enddo
|
|
|
|
! Pre-compute excitation degrees wrt beta determinants
|
|
do i=1,N_det_beta_unique
|
|
call get_excitation_degree_spin(psi_det_beta_unique(1,i), &
|
|
psi_det_generators(1,2,i_generator), exc_degree(i), N_int)
|
|
enddo
|
|
|
|
! Iterate on 0S alpha, and find betas TQ such that exc_degree <= 4
|
|
do j=1,N_det_alpha_unique
|
|
call get_excitation_degree_spin(psi_det_alpha_unique(1,j), &
|
|
psi_det_generators(1,1,i_generator), nt, N_int)
|
|
if (nt > 1) cycle
|
|
do l_a=psi_bilinear_matrix_transp_rows_loc(j), psi_bilinear_matrix_transp_rows_loc(j+1)-1
|
|
i = psi_bilinear_matrix_transp_columns(l_a)
|
|
if (exc_degree(i) < 3) cycle
|
|
if (nt + exc_degree(i) <= 4) then
|
|
idx = psi_det_sorted_order( &
|
|
psi_bilinear_matrix_order( &
|
|
psi_bilinear_matrix_transp_order(l_a)))
|
|
! Removed to avoid introducing determinants already presents in the wf
|
|
!if (psi_average_norm_contrib_sorted(idx) > norm_thr) then
|
|
indices(k) = idx
|
|
k=k+1
|
|
!endif
|
|
endif
|
|
enddo
|
|
enddo
|
|
|
|
deallocate(exc_degree)
|
|
nmax=k-1
|
|
|
|
call isort_noidx(indices,nmax)
|
|
|
|
! Start with 32 elements. Size will double along with the filtering.
|
|
allocate(preinteresting(0:32), prefullinteresting(0:32), &
|
|
interesting(0:32), fullinteresting(0:32))
|
|
preinteresting(:) = 0
|
|
prefullinteresting(:) = 0
|
|
|
|
do i=1,N_int
|
|
negMask(i,1) = not(psi_det_generators(i,1,i_generator))
|
|
negMask(i,2) = not(psi_det_generators(i,2,i_generator))
|
|
end do
|
|
|
|
do k=1,nmax
|
|
i = indices(k)
|
|
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted(1,1,i))
|
|
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted(1,2,i))
|
|
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
|
|
do j=2,N_int
|
|
mobMask(j,1) = iand(negMask(j,1), psi_det_sorted(j,1,i))
|
|
mobMask(j,2) = iand(negMask(j,2), psi_det_sorted(j,2,i))
|
|
nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
|
|
end do
|
|
|
|
if(nt <= 4) then
|
|
if(i <= N_det_selectors) then
|
|
sze = preinteresting(0)
|
|
if (sze+1 == size(preinteresting)) then
|
|
allocate (tmp_array(0:sze))
|
|
tmp_array(0:sze) = preinteresting(0:sze)
|
|
deallocate(preinteresting)
|
|
allocate(preinteresting(0:2*sze))
|
|
preinteresting(0:sze) = tmp_array(0:sze)
|
|
deallocate(tmp_array)
|
|
endif
|
|
preinteresting(0) = sze+1
|
|
preinteresting(sze+1) = i
|
|
else if(nt <= 2) then
|
|
sze = prefullinteresting(0)
|
|
if (sze+1 == size(prefullinteresting)) then
|
|
allocate (tmp_array(0:sze))
|
|
tmp_array(0:sze) = prefullinteresting(0:sze)
|
|
deallocate(prefullinteresting)
|
|
allocate(prefullinteresting(0:2*sze))
|
|
prefullinteresting(0:sze) = tmp_array(0:sze)
|
|
deallocate(tmp_array)
|
|
endif
|
|
prefullinteresting(0) = sze+1
|
|
prefullinteresting(sze+1) = i
|
|
end if
|
|
end if
|
|
end do
|
|
deallocate(indices)
|
|
|
|
|
|
allocate(banned(mo_num, mo_num,2), bannedOrb(mo_num, 2))
|
|
allocate(mat(N_states, mo_num, mo_num))
|
|
maskInd = -1
|
|
|
|
do s1 = 1, 2
|
|
do i1 = N_holes(s1), 1, -1 ! Generate low excitations first
|
|
|
|
found = .False.
|
|
monoBdo_save = monoBdo
|
|
maskInd_save = maskInd
|
|
do s2 = s1, 2
|
|
ib = 1
|
|
if(s1 == s2) ib = i1+1
|
|
do i2 = N_holes(s2), ib, -1
|
|
maskInd = maskInd + 1
|
|
if(mod(maskInd, csubset) == (subset-1)) then
|
|
found = .True.
|
|
end if
|
|
enddo
|
|
if(s1 /= s2) monoBdo = .false.
|
|
enddo
|
|
|
|
if (.not.found) cycle
|
|
monoBdo = monoBdo_save
|
|
maskInd = maskInd_save
|
|
|
|
h1 = hole_list(i1,s1)
|
|
call apply_hole(psi_det_generators(1,1,i_generator), s1, h1, pmask, ok, N_int)
|
|
|
|
negMask = not(pmask)
|
|
|
|
interesting(0) = 0
|
|
fullinteresting(0) = 0
|
|
|
|
do ii = 1, preinteresting(0)
|
|
i = preinteresting(ii)
|
|
select case (N_int)
|
|
case (1)
|
|
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted(1,1,i))
|
|
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted(1,2,i))
|
|
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
|
|
case (2)
|
|
mobMask(1:2,1) = iand(negMask(1:2,1), psi_det_sorted(1:2,1,i))
|
|
mobMask(1:2,2) = iand(negMask(1:2,2), psi_det_sorted(1:2,2,i))
|
|
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) + &
|
|
popcnt(mobMask(2, 1)) + popcnt(mobMask(2, 2))
|
|
case (3)
|
|
mobMask(1:3,1) = iand(negMask(1:3,1), psi_det_sorted(1:3,1,i))
|
|
mobMask(1:3,2) = iand(negMask(1:3,2), psi_det_sorted(1:3,2,i))
|
|
nt = 0
|
|
do j = 3, 1, -1
|
|
if (mobMask(j,1) /= 0_bit_kind) then
|
|
nt = nt+ popcnt(mobMask(j, 1))
|
|
if (nt > 4) exit
|
|
endif
|
|
if (mobMask(j,2) /= 0_bit_kind) then
|
|
nt = nt+ popcnt(mobMask(j, 2))
|
|
if (nt > 4) exit
|
|
endif
|
|
end do
|
|
case (4)
|
|
mobMask(1:4,1) = iand(negMask(1:4,1), psi_det_sorted(1:4,1,i))
|
|
mobMask(1:4,2) = iand(negMask(1:4,2), psi_det_sorted(1:4,2,i))
|
|
nt = 0
|
|
do j = 4, 1, -1
|
|
if (mobMask(j,1) /= 0_bit_kind) then
|
|
nt = nt+ popcnt(mobMask(j, 1))
|
|
if (nt > 4) exit
|
|
endif
|
|
if (mobMask(j,2) /= 0_bit_kind) then
|
|
nt = nt+ popcnt(mobMask(j, 2))
|
|
if (nt > 4) exit
|
|
endif
|
|
end do
|
|
case default
|
|
mobMask(1:N_int,1) = iand(negMask(1:N_int,1), psi_det_sorted(1:N_int,1,i))
|
|
mobMask(1:N_int,2) = iand(negMask(1:N_int,2), psi_det_sorted(1:N_int,2,i))
|
|
nt = 0
|
|
do j = N_int, 1, -1
|
|
if (mobMask(j,1) /= 0_bit_kind) then
|
|
nt = nt+ popcnt(mobMask(j, 1))
|
|
if (nt > 4) exit
|
|
endif
|
|
if (mobMask(j,2) /= 0_bit_kind) then
|
|
nt = nt+ popcnt(mobMask(j, 2))
|
|
if (nt > 4) exit
|
|
endif
|
|
end do
|
|
end select
|
|
|
|
if(nt <= 4) then
|
|
sze = interesting(0)
|
|
if (sze+1 == size(interesting)) then
|
|
allocate (tmp_array(0:sze))
|
|
tmp_array(0:sze) = interesting(0:sze)
|
|
deallocate(interesting)
|
|
allocate(interesting(0:2*sze))
|
|
interesting(0:sze) = tmp_array(0:sze)
|
|
deallocate(tmp_array)
|
|
endif
|
|
interesting(0) = sze+1
|
|
interesting(sze+1) = i
|
|
if(nt <= 2) then
|
|
sze = fullinteresting(0)
|
|
if (sze+1 == size(fullinteresting)) then
|
|
allocate (tmp_array(0:sze))
|
|
tmp_array(0:sze) = fullinteresting(0:sze)
|
|
deallocate(fullinteresting)
|
|
allocate(fullinteresting(0:2*sze))
|
|
fullinteresting(0:sze) = tmp_array(0:sze)
|
|
deallocate(tmp_array)
|
|
endif
|
|
fullinteresting(0) = sze+1
|
|
fullinteresting(sze+1) = i
|
|
end if
|
|
end if
|
|
|
|
end do
|
|
|
|
do ii = 1, prefullinteresting(0)
|
|
i = prefullinteresting(ii)
|
|
nt = 0
|
|
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted(1,1,i))
|
|
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted(1,2,i))
|
|
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
|
|
if (nt > 2) cycle
|
|
do j=N_int,2,-1
|
|
mobMask(j,1) = iand(negMask(j,1), psi_det_sorted(j,1,i))
|
|
mobMask(j,2) = iand(negMask(j,2), psi_det_sorted(j,2,i))
|
|
nt = nt+ popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
|
|
if (nt > 2) exit
|
|
end do
|
|
|
|
if(nt <= 2) then
|
|
sze = fullinteresting(0)
|
|
if (sze+1 == size(fullinteresting)) then
|
|
allocate (tmp_array(0:sze))
|
|
tmp_array(0:sze) = fullinteresting(0:sze)
|
|
deallocate(fullinteresting)
|
|
allocate(fullinteresting(0:2*sze))
|
|
fullinteresting(0:sze) = tmp_array(0:sze)
|
|
deallocate(tmp_array)
|
|
endif
|
|
fullinteresting(0) = sze+1
|
|
fullinteresting(sze+1) = i
|
|
end if
|
|
end do
|
|
allocate (fullminilist (N_int, 2, fullinteresting(0)), &
|
|
minilist (N_int, 2, interesting(0)) )
|
|
|
|
do i=1,fullinteresting(0)
|
|
fullminilist(:,:,i) = psi_det_sorted(:,:,fullinteresting(i))
|
|
enddo
|
|
|
|
do i=1,interesting(0)
|
|
minilist(:,:,i) = psi_det_sorted(:,:,interesting(i))
|
|
enddo
|
|
|
|
do s2 = s1, 2
|
|
sp = s1
|
|
|
|
if(s1 /= s2) sp = 3
|
|
|
|
ib = 1
|
|
if(s1 == s2) ib = i1+1
|
|
monoAdo = .true.
|
|
do i2 = N_holes(s2), ib, -1 ! Generate low excitations first
|
|
|
|
h2 = hole_list(i2,s2)
|
|
call apply_hole(pmask, s2,h2, mask, ok, N_int)
|
|
banned(:,:,1) = banned_excitation(:,:)
|
|
banned(:,:,2) = banned_excitation(:,:)
|
|
do j = 1, mo_num
|
|
bannedOrb(j, 1) = .true.
|
|
bannedOrb(j, 2) = .true.
|
|
enddo
|
|
do s3 = 1, 2
|
|
do i = 1, N_particles(s3)
|
|
bannedOrb(particle_list(i,s3), s3) = .false.
|
|
enddo
|
|
enddo
|
|
if(s1 /= s2) then
|
|
if(monoBdo) then
|
|
bannedOrb(h1,s1) = .false.
|
|
endif
|
|
if(monoAdo) then
|
|
bannedOrb(h2,s2) = .false.
|
|
monoAdo = .false.
|
|
endif
|
|
endif
|
|
|
|
maskInd = maskInd + 1
|
|
if(mod(maskInd, csubset) == (subset-1)) then
|
|
|
|
call spot_isinwf(mask, fullminilist, i_generator, fullinteresting(0), banned, fullMatch, fullinteresting)
|
|
if(fullMatch) cycle
|
|
|
|
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting)
|
|
|
|
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
|
|
end if
|
|
|
|
|
|
enddo
|
|
|
|
if(s1 /= s2) monoBdo = .false.
|
|
enddo
|
|
|
|
deallocate(fullminilist, minilist)
|
|
|
|
enddo
|
|
enddo
|
|
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)
|
|
deallocate(banned, bannedOrb,mat)
|
|
end subroutine
|
|
|
|
BEGIN_TEMPLATE
|
|
|
|
subroutine fill_buffer_$DOUBLE(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
|
|
use bitmasks
|
|
use selection_types
|
|
implicit none
|
|
|
|
integer, intent(in) :: i_generator, sp, h1, h2
|
|
double precision, intent(in) :: mat(N_states, mo_num, mo_num)
|
|
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
|
|
double precision, intent(in) :: fock_diag_tmp(mo_num)
|
|
double precision, intent(in) :: E0(N_states)
|
|
type(pt2_type), intent(inout) :: pt2_data
|
|
type(selection_buffer), intent(inout) :: buf
|
|
logical :: ok
|
|
integer :: s1, s2, p1, p2, ib, j, istate, jstate
|
|
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
|
|
double precision :: e_pert(N_states), coef(N_states)
|
|
double precision :: delta_E, val, Hii, w, tmp, alpha_h_psi
|
|
double precision, external :: diag_H_mat_elem_fock
|
|
double precision :: E_shift
|
|
double precision :: s_weight(N_states,N_states)
|
|
PROVIDE dominant_dets_of_cfgs N_dominant_dets_of_cfgs
|
|
do jstate=1,N_states
|
|
do istate=1,N_states
|
|
s_weight(istate,jstate) = dsqrt(selection_weight(istate)*selection_weight(jstate))
|
|
enddo
|
|
enddo
|
|
|
|
if(sp == 3) then
|
|
s1 = 1
|
|
s2 = 2
|
|
else
|
|
s1 = sp
|
|
s2 = sp
|
|
end if
|
|
|
|
if ($IS_DOUBLE) then
|
|
if (h2 == 0) then
|
|
print *, 'h2=0 in '//trim(irp_here)
|
|
stop
|
|
endif
|
|
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
|
|
else
|
|
if (h2 /= 0) then
|
|
print *, 'h2 /= in '//trim(irp_here)
|
|
stop
|
|
endif
|
|
call apply_hole(psi_det_generators(1,1,i_generator), s1, h1, mask, ok, N_int)
|
|
endif
|
|
E_shift = 0.d0
|
|
|
|
if (h0_type == 'CFG') then
|
|
j = det_to_configuration(i_generator)
|
|
E_shift = psi_det_Hii(i_generator) - psi_configuration_Hii(j)
|
|
endif
|
|
|
|
$DO_p1
|
|
! do p1=1,mo_num
|
|
|
|
if (bannedOrb(p1, s1)) cycle
|
|
ib = 1
|
|
if(sp /= 3) ib = p1+1
|
|
|
|
$DO_p2
|
|
! do p2=ib,mo_num
|
|
|
|
! -----
|
|
! /!\ Generating only single excited determinants doesn't work because a
|
|
! determinant generated by a single excitation may be doubly excited wrt
|
|
! to a determinant of the future. In that case, the determinant will be
|
|
! detected as already generated when generating in the future with a
|
|
! double excitation.
|
|
! -----
|
|
if ($IS_DOUBLE) then
|
|
if(bannedOrb(p2, s2)) cycle
|
|
if(banned(p1,p2)) cycle
|
|
endif
|
|
|
|
if(pseudo_sym)then
|
|
if(dabs(mat(1, p1, p2)).lt.thresh_sym)then
|
|
w = 0.d0
|
|
endif
|
|
endif
|
|
|
|
val = maxval(abs(mat(1:N_states, p1, p2)))
|
|
if( val == 0d0) cycle
|
|
if ($IS_DOUBLE) then
|
|
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
|
else
|
|
call apply_particle(mask, s1, p1, det, ok, N_int)
|
|
endif
|
|
|
|
if (do_ormas) then
|
|
logical, external :: det_allowed_ormas
|
|
if (.not.det_allowed_ormas(det)) cycle
|
|
endif
|
|
|
|
if (do_only_cas) then
|
|
integer, external :: number_of_holes, number_of_particles
|
|
if (number_of_particles(det)>0) then
|
|
cycle
|
|
endif
|
|
if (number_of_holes(det)>0) then
|
|
cycle
|
|
endif
|
|
endif
|
|
|
|
if (do_ddci) then
|
|
logical, external :: is_a_two_holes_two_particles
|
|
if (is_a_two_holes_two_particles(det)) then
|
|
cycle
|
|
endif
|
|
endif
|
|
|
|
if (do_only_1h1p) then
|
|
logical, external :: is_a_1h1p
|
|
if (.not.is_a_1h1p(det)) cycle
|
|
endif
|
|
|
|
if (seniority_max >= 0) then
|
|
integer :: s
|
|
s = 0
|
|
do k=1,N_int
|
|
s = s + popcnt(ieor(det(k,1),det(k,2)))
|
|
enddo
|
|
|
|
if (s > seniority_max) cycle
|
|
endif
|
|
|
|
|
|
integer :: degree
|
|
logical :: do_cycle
|
|
if (excitation_max >= 0) then
|
|
do_cycle = .True.
|
|
if (excitation_ref == 1) then
|
|
call get_excitation_degree(HF_bitmask,det(1,1),degree,N_int)
|
|
do_cycle = do_cycle .and. (degree > excitation_max)
|
|
else if (excitation_ref == 2) then
|
|
do k=1,N_dominant_dets_of_cfgs
|
|
call get_excitation_degree(dominant_dets_of_cfgs(1,1,k),det(1,1),degree,N_int)
|
|
do_cycle = do_cycle .and. (degree > excitation_max)
|
|
enddo
|
|
endif
|
|
if (do_cycle) cycle
|
|
endif
|
|
|
|
|
|
if (excitation_alpha_max >= 0) then
|
|
do_cycle = .True.
|
|
if (excitation_ref == 1) then
|
|
call get_excitation_degree_spin(HF_bitmask,det(1,1),degree,N_int)
|
|
do_cycle = do_cycle .and. (degree > excitation_max)
|
|
else if (excitation_ref == 2) then
|
|
do k=1,N_dominant_dets_of_cfgs
|
|
call get_excitation_degree_spin(dominant_dets_of_cfgs(1,1,k),det(1,1),degree,N_int)
|
|
do_cycle = do_cycle .and. (degree > excitation_alpha_max)
|
|
enddo
|
|
endif
|
|
if (do_cycle) cycle
|
|
endif
|
|
|
|
|
|
if (excitation_beta_max >= 0) then
|
|
do_cycle = .True.
|
|
if (excitation_ref == 1) then
|
|
call get_excitation_degree_spin(HF_bitmask,det(1,2),degree,N_int)
|
|
do_cycle = do_cycle .and. (degree > excitation_max)
|
|
else if (excitation_ref == 2) then
|
|
do k=1,N_dominant_dets_of_cfgs
|
|
call get_excitation_degree(dominant_dets_of_cfgs(1,2,k),det(1,2),degree,N_int)
|
|
do_cycle = do_cycle .and. (degree > excitation_beta_max)
|
|
enddo
|
|
endif
|
|
if (do_cycle) cycle
|
|
endif
|
|
|
|
if (twice_hierarchy_max >= 0) then
|
|
s = 0
|
|
do k=1,N_int
|
|
s = s + popcnt(ieor(det(k,1),det(k,2)))
|
|
enddo
|
|
if ( mod(s,2)>0 ) stop 'For now, hierarchy CI is defined only for an even number of electrons'
|
|
if (excitation_ref == 1) then
|
|
call get_excitation_degree(HF_bitmask,det(1,1),degree,N_int)
|
|
else if (excitation_ref == 2) then
|
|
stop 'For now, hierarchy CI is defined only for a single reference determinant'
|
|
! do k=1,N_dominant_dets_of_cfgs
|
|
! call get_excitation_degree(dominant_dets_of_cfgs(1,1,k),det(1,1),degree,N_int)
|
|
! enddo
|
|
endif
|
|
integer :: twice_hierarchy
|
|
twice_hierarchy = degree + s/2
|
|
if (twice_hierarchy > twice_hierarchy_max) cycle
|
|
endif
|
|
|
|
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
|
|
|
|
w = 0d0
|
|
|
|
e_pert = 0.d0
|
|
coef = 0.d0
|
|
logical :: do_diag
|
|
do_diag = .False.
|
|
|
|
do istate=1,N_states
|
|
delta_E = E0(istate) - Hii + E_shift
|
|
alpha_h_psi = mat(istate, p1, p2)
|
|
if (alpha_h_psi == 0.d0) cycle
|
|
|
|
val = alpha_h_psi + alpha_h_psi
|
|
tmp = dsqrt(delta_E * delta_E + val * val)
|
|
if (delta_E < 0.d0) then
|
|
tmp = -tmp
|
|
endif
|
|
|
|
!e_pert(istate) = alpha_h_psi * alpha_h_psi / (E0(istate) - Hii)
|
|
e_pert(istate) = 0.5d0 * (tmp - delta_E)
|
|
|
|
if (dabs(alpha_h_psi) > 1.d-4) then
|
|
coef(istate) = e_pert(istate) / alpha_h_psi
|
|
else
|
|
coef(istate) = alpha_h_psi / delta_E
|
|
endif
|
|
enddo
|
|
|
|
do_diag = sum(dabs(coef)) > 0.001d0 .and. N_states > 1
|
|
|
|
double precision :: eigvalues(N_states+1)
|
|
double precision :: work(1+6*(N_states+1)+2*(N_states+1)**2)
|
|
integer :: info, k , iwork(N_states+1)
|
|
|
|
if (do_diag) then
|
|
double precision :: pt2_matrix(N_states+1,N_states+1)
|
|
pt2_matrix(N_states+1,N_states+1) = Hii+E_shift
|
|
do istate=1,N_states
|
|
pt2_matrix(:,istate) = 0.d0
|
|
pt2_matrix(istate,istate) = E0(istate)
|
|
pt2_matrix(istate,N_states+1) = mat(istate,p1,p2)
|
|
pt2_matrix(N_states+1,istate) = mat(istate,p1,p2)
|
|
enddo
|
|
|
|
call DSYEV( 'V', 'U', N_states+1, pt2_matrix, N_states+1, eigvalues, &
|
|
work, size(work), info )
|
|
if (info /= 0) then
|
|
print *, 'error in '//irp_here
|
|
stop -1
|
|
endif
|
|
pt2_matrix = dabs(pt2_matrix)
|
|
iwork(1:N_states+1) = maxloc(pt2_matrix,DIM=1)
|
|
do k=1,N_states
|
|
e_pert(k) = eigvalues(iwork(k)) - E0(k)
|
|
enddo
|
|
endif
|
|
|
|
|
|
|
|
! ! Gram-Schmidt using input overlap matrix
|
|
! do istate=1,N_states
|
|
! do jstate=1,istate-1
|
|
! if ( (pt2_overlap(jstate,istate) == 0.d0).or.(pt2_overlap(jstate,jstate) == 0.d0) ) cycle
|
|
! coef(istate) = coef(istate) - pt2_overlap(jstate,istate)/pt2_overlap(jstate,jstate) * coef(jstate)
|
|
! enddo
|
|
! enddo
|
|
|
|
do istate=1, N_states
|
|
|
|
alpha_h_psi = mat(istate, p1, p2)
|
|
|
|
pt2_data % overlap(:,istate) = pt2_data % overlap(:,istate) + coef(:) * coef(istate)
|
|
pt2_data % variance(istate) = pt2_data % variance(istate) + alpha_h_psi * alpha_h_psi
|
|
pt2_data % pt2(istate) = pt2_data % pt2(istate) + e_pert(istate)
|
|
|
|
!!!DEBUG
|
|
! delta_E = E0(istate) - Hii + E_shift
|
|
! pt2_data % pt2(istate) = pt2_data % pt2(istate) + alpha_h_psi**2/delta_E
|
|
!
|
|
! integer :: k
|
|
! double precision :: alpha_h_psi_2,hij
|
|
! alpha_h_psi_2 = 0.d0
|
|
! do k = 1,N_det_selectors
|
|
! call i_H_j(det,psi_selectors(1,1,k),N_int,hij)
|
|
! alpha_h_psi_2 = alpha_h_psi_2 + psi_selectors_coef(k,istate) * hij
|
|
! enddo
|
|
! if(dabs(alpha_h_psi_2 - alpha_h_psi).gt.1.d-12)then
|
|
! call debug_det(psi_det_generators(1,1,i_generator),N_int)
|
|
! call debug_det(det,N_int)
|
|
! print*,'alpha_h_psi,alpha_h_psi_2 = ',alpha_h_psi,alpha_h_psi_2
|
|
! stop
|
|
! endif
|
|
!!!DEBUG
|
|
|
|
select case (weight_selection)
|
|
|
|
case(5)
|
|
! Variance selection
|
|
if (h0_type == 'CFG') then
|
|
w = min(w, - alpha_h_psi * alpha_h_psi * s_weight(istate,istate)) &
|
|
/ c0_weight(istate)
|
|
else
|
|
w = min(w, - alpha_h_psi * alpha_h_psi * s_weight(istate,istate))
|
|
endif
|
|
|
|
case(6)
|
|
if (h0_type == 'CFG') then
|
|
w = min(w,- coef(istate) * coef(istate) * s_weight(istate,istate)) &
|
|
/ c0_weight(istate)
|
|
else
|
|
w = min(w,- coef(istate) * coef(istate) * s_weight(istate,istate))
|
|
endif
|
|
|
|
case default
|
|
! Energy selection
|
|
if (h0_type == 'CFG') then
|
|
w = min(w, e_pert(istate) * s_weight(istate,istate)) / c0_weight(istate)
|
|
else
|
|
! if(dabs(e_pert(istate) * s_weight(istate,istate)).gt.1.d-5)then
|
|
! print*,w,e_pert(istate) * s_weight(istate,istate)
|
|
! endif
|
|
w = min(w, e_pert(istate) * s_weight(istate,istate))
|
|
! if(dabs(e_pert(istate) * s_weight(istate,istate)).gt.1.d-5)then
|
|
! print*,w
|
|
! endif
|
|
endif
|
|
|
|
end select
|
|
|
|
! To force the inclusion of determinants with a positive pt2 contribution
|
|
if (e_pert(istate) > 1d-8) then
|
|
w = -huge(1.0)
|
|
endif
|
|
|
|
end do
|
|
|
|
!!!BEGIN_DEBUG
|
|
! ! To check if the pt2 is taking determinants already in the wf
|
|
! if (is_in_wavefunction(det(N_int,1),N_int)) then
|
|
! logical, external :: is_in_wavefunction
|
|
! print*, 'A determinant contributing to the pt2 is already in'
|
|
! print*, 'the wave function:'
|
|
! call print_det(det(N_int,1),N_int)
|
|
! print*,'contribution to the pt2 for the states:', e_pert(:)
|
|
! print*,'error in the filtering in'
|
|
! print*, 'cipsi/selection.irp.f sub: selecte_singles_and_doubles'
|
|
! print*, 'abort'
|
|
! call abort
|
|
! endif
|
|
!!!END_DEBUG
|
|
|
|
integer(bit_kind) :: occ(N_int,2), n
|
|
if (h0_type == 'CFG') then
|
|
do k=1,N_int
|
|
occ(k,1) = ieor(det(k,1),det(k,2))
|
|
occ(k,2) = iand(det(k,1),det(k,2))
|
|
enddo
|
|
call configuration_to_dets_size(occ,n,elec_alpha_num,N_int)
|
|
n = max(n,1)
|
|
w *= dsqrt(dble(n))
|
|
endif
|
|
|
|
! if(dabs(w).gt.1.d-5)then
|
|
! print*,w,buf%mini
|
|
! endif
|
|
|
|
if(w <= buf%mini) then
|
|
call add_to_selection_buffer(buf, det, w)
|
|
end if
|
|
! enddo
|
|
$ENDDO_p1
|
|
! enddo
|
|
$ENDDO_p2
|
|
end
|
|
|
|
SUBST [ DOUBLE , DO_p1 , ENDDO_p1 , DO_p2 , ENDDO_p2 , IS_DOUBLE ]
|
|
|
|
double ; do p1=1,mo_num ; enddo ; do p2=ib,mo_num ; enddo ; .True. ;;
|
|
single ; do p1=1,mo_num ; enddo ; p2=1 ; ; .False. ;;
|
|
|
|
END_TEMPLATE
|
|
|
|
subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Computes the contributions A(r,s) by
|
|
! comparing the external determinant to all the internal determinants det(i).
|
|
! an applying two particles (r,s) to the mask.
|
|
END_DOC
|
|
|
|
integer, intent(in) :: sp, i_gen, N_sel
|
|
integer, intent(in) :: interesting(0:N_sel)
|
|
integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N_sel)
|
|
logical, intent(inout) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num, 2)
|
|
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
|
|
|
|
integer :: i, ii, j, k, l, h(0:2,2), p(0:4,2), nt
|
|
integer(bit_kind) :: perMask(N_int, 2), mobMask(N_int, 2), negMask(N_int, 2)
|
|
integer(bit_kind) :: phasemask(N_int,2)
|
|
|
|
PROVIDE psi_selectors_coef_transp psi_det_sorted
|
|
mat = 0d0
|
|
p=0
|
|
|
|
do i=1,N_int
|
|
negMask(i,1) = not(mask(i,1))
|
|
negMask(i,2) = not(mask(i,2))
|
|
end do
|
|
|
|
do i=1, N_sel
|
|
if (interesting(i) < 0) then
|
|
stop 'prefetch interesting(i) and det(i)'
|
|
endif
|
|
|
|
mobMask(1,1) = iand(negMask(1,1), det(1,1,i))
|
|
mobMask(1,2) = iand(negMask(1,2), det(1,2,i))
|
|
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
|
|
|
|
if(nt > 4) cycle
|
|
|
|
do j=2,N_int
|
|
mobMask(j,1) = iand(negMask(j,1), det(j,1,i))
|
|
mobMask(j,2) = iand(negMask(j,2), det(j,2,i))
|
|
nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
|
|
end do
|
|
|
|
if(nt > 4) cycle
|
|
|
|
if (interesting(i) == i_gen) then
|
|
if(sp == 3) then
|
|
do k=1,mo_num
|
|
do j=1,mo_num
|
|
banned(j,k,2) = banned(k,j,1)
|
|
enddo
|
|
enddo
|
|
else
|
|
do k=1,mo_num
|
|
do l=k+1,mo_num
|
|
banned(l,k,1) = banned(k,l,1)
|
|
end do
|
|
end do
|
|
end if
|
|
end if
|
|
|
|
if (interesting(i) >= i_gen) then
|
|
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
|
|
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
|
|
|
|
perMask(1,1) = iand(mask(1,1), not(det(1,1,i)))
|
|
perMask(1,2) = iand(mask(1,2), not(det(1,2,i)))
|
|
do j=2,N_int
|
|
perMask(j,1) = iand(mask(j,1), not(det(j,1,i)))
|
|
perMask(j,2) = iand(mask(j,2), not(det(j,2,i)))
|
|
end do
|
|
|
|
call bitstring_to_list_in_selection(perMask(1,1), h(1,1), h(0,1), N_int)
|
|
call bitstring_to_list_in_selection(perMask(1,2), h(1,2), h(0,2), N_int)
|
|
|
|
call get_mask_phase(psi_det_sorted(1,1,interesting(i)), phasemask,N_int)
|
|
if(nt == 4) then
|
|
call get_d2(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
|
|
else if(nt == 3) then
|
|
call get_d1(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
|
|
else
|
|
call get_d0(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
|
|
end if
|
|
else if(nt == 4) then
|
|
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
|
|
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
|
|
call past_d2(banned, p, sp)
|
|
else if(nt == 3) then
|
|
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
|
|
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
|
|
call past_d1(bannedOrb, p)
|
|
end if
|
|
end do
|
|
|
|
end
|
|
|
|
|
|
subroutine get_d2(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
|
use bitmasks
|
|
implicit none
|
|
|
|
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
|
|
integer(bit_kind), intent(in) :: phasemask(N_int,2)
|
|
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
|
double precision, intent(in) :: coefs(N_states)
|
|
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
|
|
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
|
|
|
double precision, external :: get_phase_bi, mo_two_e_integral
|
|
|
|
integer :: i, j, k, tip, ma, mi, puti, putj
|
|
integer :: h1, h2, p1, p2, i1, i2
|
|
double precision :: hij, phase
|
|
|
|
integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/))
|
|
integer, parameter :: turn2(2) = (/2, 1/)
|
|
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
|
|
|
|
integer :: bant
|
|
bant = 1
|
|
|
|
tip = p(0,1) * p(0,2)
|
|
|
|
ma = sp
|
|
if(p(0,1) > p(0,2)) ma = 1
|
|
if(p(0,1) < p(0,2)) ma = 2
|
|
mi = mod(ma, 2) + 1
|
|
|
|
if(sp == 3) then
|
|
if(ma == 2) bant = 2
|
|
|
|
if(tip == 3) then
|
|
puti = p(1, mi)
|
|
if(bannedOrb(puti, mi)) return
|
|
h1 = h(1, ma)
|
|
h2 = h(2, ma)
|
|
|
|
do i = 1, 3
|
|
putj = p(i, ma)
|
|
if(banned(putj,puti,bant)) cycle
|
|
i1 = turn3(1,i)
|
|
i2 = turn3(2,i)
|
|
p1 = p(i1, ma)
|
|
p2 = p(i2, ma)
|
|
|
|
hij = mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2, p1, h1, h2)
|
|
if (hij == 0.d0) cycle
|
|
|
|
hij = hij * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
|
|
|
|
if(ma == 1) then
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k, putj, puti) = mat(k, putj, puti) + coefs(k) * hij
|
|
enddo
|
|
else
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
|
|
enddo
|
|
end if
|
|
end do
|
|
else
|
|
h1 = h(1,1)
|
|
h2 = h(1,2)
|
|
do j = 1,2
|
|
putj = p(j, 2)
|
|
if(bannedOrb(putj, 2)) cycle
|
|
p2 = p(turn2(j), 2)
|
|
do i = 1,2
|
|
puti = p(i, 1)
|
|
|
|
if(banned(puti,putj,bant) .or. bannedOrb(puti,1)) cycle
|
|
p1 = p(turn2(i), 1)
|
|
|
|
hij = mo_two_e_integral(p1, p2, h1, h2)
|
|
if (hij /= 0.d0) then
|
|
hij = hij * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
|
|
enddo
|
|
endif
|
|
end do
|
|
end do
|
|
end if
|
|
|
|
else
|
|
if(tip == 0) then
|
|
h1 = h(1, ma)
|
|
h2 = h(2, ma)
|
|
do i=1,3
|
|
puti = p(i, ma)
|
|
if(bannedOrb(puti,ma)) cycle
|
|
do j=i+1,4
|
|
putj = p(j, ma)
|
|
if(bannedOrb(putj,ma)) cycle
|
|
if(banned(puti,putj,1)) cycle
|
|
|
|
i1 = turn2d(1, i, j)
|
|
i2 = turn2d(2, i, j)
|
|
p1 = p(i1, ma)
|
|
p2 = p(i2, ma)
|
|
hij = mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)
|
|
if (hij == 0.d0) cycle
|
|
|
|
hij = hij * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k, puti, putj) = mat(k, puti, putj) +coefs(k) * hij
|
|
enddo
|
|
end do
|
|
end do
|
|
else if(tip == 3) then
|
|
h1 = h(1, mi)
|
|
h2 = h(1, ma)
|
|
p1 = p(1, mi)
|
|
do i=1,3
|
|
puti = p(turn3(1,i), ma)
|
|
if(bannedOrb(puti,ma)) cycle
|
|
putj = p(turn3(2,i), ma)
|
|
if(bannedOrb(putj,ma)) cycle
|
|
if(banned(puti,putj,1)) cycle
|
|
p2 = p(i, ma)
|
|
|
|
hij = mo_two_e_integral(p1, p2, h1, h2)
|
|
if (hij == 0.d0) cycle
|
|
|
|
hij = hij * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2, N_int)
|
|
if (puti < putj) then
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
|
|
enddo
|
|
else
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k, putj, puti) = mat(k, putj, puti) + coefs(k) * hij
|
|
enddo
|
|
endif
|
|
end do
|
|
else ! tip == 4
|
|
puti = p(1, sp)
|
|
putj = p(2, sp)
|
|
if(.not. banned(puti,putj,1)) then
|
|
p1 = p(1, mi)
|
|
p2 = p(2, mi)
|
|
h1 = h(1, mi)
|
|
h2 = h(2, mi)
|
|
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2))
|
|
if (hij /= 0.d0) then
|
|
hij = hij * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2, N_int)
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
|
|
enddo
|
|
end if
|
|
end if
|
|
end if
|
|
end if
|
|
end
|
|
|
|
|
|
subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
|
use bitmasks
|
|
implicit none
|
|
|
|
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
|
|
integer(bit_kind), intent(in) :: phasemask(N_int,2)
|
|
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
|
integer(bit_kind) :: det(N_int, 2)
|
|
double precision, intent(in) :: coefs(N_states)
|
|
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
|
|
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
|
double precision, external :: get_phase_bi, mo_two_e_integral
|
|
logical :: ok
|
|
|
|
logical, allocatable :: lbanned(:,:)
|
|
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
|
|
integer :: hfix, pfix, h1, h2, p1, p2, ib, k, l
|
|
|
|
integer, parameter :: turn2(2) = (/2,1/)
|
|
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
|
|
|
|
integer :: bant
|
|
double precision, allocatable :: hij_cache(:,:)
|
|
double precision :: hij, tmp_row(N_states, mo_num), tmp_row2(N_states, mo_num)
|
|
PROVIDE mo_integrals_map N_int
|
|
|
|
allocate (lbanned(mo_num, 2))
|
|
allocate (hij_cache(mo_num,2))
|
|
lbanned = bannedOrb
|
|
|
|
do i=1, p(0,1)
|
|
lbanned(p(i,1), 1) = .true.
|
|
end do
|
|
do i=1, p(0,2)
|
|
lbanned(p(i,2), 2) = .true.
|
|
end do
|
|
|
|
ma = 1
|
|
if(p(0,2) >= 2) ma = 2
|
|
mi = turn2(ma)
|
|
|
|
bant = 1
|
|
|
|
if(sp == 3) then
|
|
!move MA
|
|
if(ma == 2) bant = 2
|
|
puti = p(1,mi)
|
|
hfix = h(1,ma)
|
|
p1 = p(1,ma)
|
|
p2 = p(2,ma)
|
|
if(.not. bannedOrb(puti, mi)) then
|
|
call get_mo_two_e_integrals(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map)
|
|
call get_mo_two_e_integrals(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map)
|
|
tmp_row = 0d0
|
|
do putj=1, hfix-1
|
|
if(lbanned(putj, ma)) cycle
|
|
if(banned(putj, puti,bant)) cycle
|
|
hij = hij_cache(putj,1) - hij_cache(putj,2)
|
|
if (hij /= 0.d0) then
|
|
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
tmp_row(k,putj) = tmp_row(k,putj) + hij * coefs(k)
|
|
enddo
|
|
endif
|
|
end do
|
|
do putj=hfix+1, mo_num
|
|
if(lbanned(putj, ma)) cycle
|
|
if(banned(putj, puti,bant)) cycle
|
|
hij = hij_cache(putj,2) - hij_cache(putj,1)
|
|
if (hij /= 0.d0) then
|
|
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
tmp_row(k,putj) = tmp_row(k,putj) + hij * coefs(k)
|
|
enddo
|
|
endif
|
|
end do
|
|
|
|
if(ma == 1) then
|
|
mat(1:N_states,1:mo_num,puti) = mat(1:N_states,1:mo_num,puti) + tmp_row(1:N_states,1:mo_num)
|
|
else
|
|
do l=1,mo_num
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k,puti,l) = mat(k,puti,l) + tmp_row(k,l)
|
|
enddo
|
|
enddo
|
|
end if
|
|
end if
|
|
|
|
!MOVE MI
|
|
pfix = p(1,mi)
|
|
tmp_row = 0d0
|
|
tmp_row2 = 0d0
|
|
call get_mo_two_e_integrals(hfix,pfix,p1,mo_num,hij_cache(1,1),mo_integrals_map)
|
|
call get_mo_two_e_integrals(hfix,pfix,p2,mo_num,hij_cache(1,2),mo_integrals_map)
|
|
putj = p1
|
|
do puti=1,mo_num !HOT
|
|
if(lbanned(puti,mi)) cycle
|
|
!p1 fixed
|
|
putj = p1
|
|
if(.not. banned(putj,puti,bant)) then
|
|
hij = hij_cache(puti,2)
|
|
if (hij /= 0.d0) then
|
|
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
tmp_row(k,puti) = tmp_row(k,puti) + hij * coefs(k)
|
|
enddo
|
|
endif
|
|
end if
|
|
! enddo
|
|
!
|
|
putj = p2
|
|
! do puti=1,mo_num !HOT
|
|
if(.not. banned(putj,puti,bant)) then
|
|
hij = hij_cache(puti,1)
|
|
if (hij /= 0.d0) then
|
|
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
|
|
do k=1,N_states
|
|
tmp_row2(k,puti) = tmp_row2(k,puti) + hij * coefs(k)
|
|
enddo
|
|
endif
|
|
end if
|
|
end do
|
|
|
|
if(mi == 1) then
|
|
mat(:,:,p1) = mat(:,:,p1) + tmp_row(:,:)
|
|
mat(:,:,p2) = mat(:,:,p2) + tmp_row2(:,:)
|
|
else
|
|
do l=1,mo_num
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k,p1,l) = mat(k,p1,l) + tmp_row(k,l)
|
|
mat(k,p2,l) = mat(k,p2,l) + tmp_row2(k,l)
|
|
enddo
|
|
enddo
|
|
end if
|
|
|
|
else ! sp /= 3
|
|
|
|
if(p(0,ma) == 3) then
|
|
do i=1,3
|
|
hfix = h(1,ma)
|
|
puti = p(i, ma)
|
|
p1 = p(turn3(1,i), ma)
|
|
p2 = p(turn3(2,i), ma)
|
|
call get_mo_two_e_integrals(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map)
|
|
call get_mo_two_e_integrals(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map)
|
|
tmp_row = 0d0
|
|
do putj=1,hfix-1
|
|
if(banned(putj,puti,1)) cycle
|
|
if(lbanned(putj,ma)) cycle
|
|
hij = hij_cache(putj,1) - hij_cache(putj,2)
|
|
if (hij /= 0.d0) then
|
|
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
|
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
|
|
endif
|
|
end do
|
|
do putj=hfix+1,mo_num
|
|
if(banned(putj,puti,1)) cycle
|
|
if(lbanned(putj,ma)) cycle
|
|
hij = hij_cache(putj,2) - hij_cache(putj,1)
|
|
if (hij /= 0.d0) then
|
|
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
|
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
|
|
endif
|
|
end do
|
|
|
|
mat(:, :puti-1, puti) = mat(:, :puti-1, puti) + tmp_row(:,:puti-1)
|
|
do l=puti,mo_num
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k, puti, l) = mat(k, puti,l) + tmp_row(k,l)
|
|
enddo
|
|
enddo
|
|
end do
|
|
else
|
|
hfix = h(1,mi)
|
|
pfix = p(1,mi)
|
|
p1 = p(1,ma)
|
|
p2 = p(2,ma)
|
|
tmp_row = 0d0
|
|
tmp_row2 = 0d0
|
|
call get_mo_two_e_integrals(hfix,p1,pfix,mo_num,hij_cache(1,1),mo_integrals_map)
|
|
call get_mo_two_e_integrals(hfix,p2,pfix,mo_num,hij_cache(1,2),mo_integrals_map)
|
|
putj = p2
|
|
do puti=1,mo_num
|
|
if(lbanned(puti,ma)) cycle
|
|
putj = p2
|
|
if(.not. banned(puti,putj,1)) then
|
|
hij = hij_cache(puti,1)
|
|
if (hij /= 0.d0) then
|
|
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
tmp_row(k,puti) = tmp_row(k,puti) + hij * coefs(k)
|
|
enddo
|
|
endif
|
|
end if
|
|
|
|
putj = p1
|
|
if(.not. banned(puti,putj,1)) then
|
|
hij = hij_cache(puti,2)
|
|
if (hij /= 0.d0) then
|
|
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
|
|
do k=1,N_states
|
|
tmp_row2(k,puti) = tmp_row2(k,puti) + hij * coefs(k)
|
|
enddo
|
|
endif
|
|
end if
|
|
end do
|
|
mat(:,:p2-1,p2) = mat(:,:p2-1,p2) + tmp_row(:,:p2-1)
|
|
do l=p2,mo_num
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k,p2,l) = mat(k,p2,l) + tmp_row(k,l)
|
|
enddo
|
|
enddo
|
|
mat(:,:p1-1,p1) = mat(:,:p1-1,p1) + tmp_row2(:,:p1-1)
|
|
do l=p1,mo_num
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k,p1,l) = mat(k,p1,l) + tmp_row2(k,l)
|
|
enddo
|
|
enddo
|
|
end if
|
|
end if
|
|
deallocate(lbanned,hij_cache)
|
|
|
|
!! MONO
|
|
if(sp == 3) then
|
|
s1 = 1
|
|
s2 = 2
|
|
else
|
|
s1 = sp
|
|
s2 = sp
|
|
end if
|
|
|
|
do i1=1,p(0,s1)
|
|
ib = 1
|
|
if(s1 == s2) ib = i1+1
|
|
do i2=ib,p(0,s2)
|
|
p1 = p(i1,s1)
|
|
p2 = p(i2,s2)
|
|
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
|
|
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
|
call i_h_j(gen, det, N_int, hij)
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * hij
|
|
enddo
|
|
end do
|
|
end do
|
|
end
|
|
|
|
|
|
|
|
|
|
subroutine get_d0(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
|
use bitmasks
|
|
implicit none
|
|
|
|
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
|
|
integer(bit_kind), intent(in) :: phasemask(N_int,2)
|
|
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
|
integer(bit_kind) :: det(N_int, 2)
|
|
double precision, intent(in) :: coefs(N_states)
|
|
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
|
|
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
|
|
|
integer :: i, j, k, s, h1, h2, p1, p2, puti, putj
|
|
double precision :: hij, phase
|
|
double precision, external :: get_phase_bi, mo_two_e_integral
|
|
logical :: ok
|
|
|
|
integer, parameter :: bant=1
|
|
double precision, allocatable :: hij_cache1(:), hij_cache2(:)
|
|
allocate (hij_cache1(mo_num),hij_cache2(mo_num))
|
|
|
|
|
|
if(sp == 3) then ! AB
|
|
h1 = p(1,1)
|
|
h2 = p(1,2)
|
|
do p1=1, mo_num
|
|
if(bannedOrb(p1, 1)) cycle
|
|
call get_mo_two_e_integrals(p1,h2,h1,mo_num,hij_cache1,mo_integrals_map)
|
|
do p2=1, mo_num
|
|
if(bannedOrb(p2,2)) cycle
|
|
if(banned(p1, p2, bant)) cycle ! rentable?
|
|
if(p1 == h1 .or. p2 == h2) then
|
|
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
|
|
call i_h_j(gen, det, N_int, hij)
|
|
else
|
|
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
|
hij = hij_cache1(p2) * phase
|
|
end if
|
|
if (hij == 0.d0) cycle
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * hij ! HOTSPOT
|
|
enddo
|
|
end do
|
|
end do
|
|
|
|
else ! AA BB
|
|
p1 = p(1,sp)
|
|
p2 = p(2,sp)
|
|
do puti=1, mo_num
|
|
if (bannedOrb(puti, sp)) cycle
|
|
call get_mo_two_e_integrals(puti,p2,p1,mo_num,hij_cache1,mo_integrals_map)
|
|
call get_mo_two_e_integrals(puti,p1,p2,mo_num,hij_cache2,mo_integrals_map)
|
|
do putj=puti+1, mo_num
|
|
if(bannedOrb(putj, sp)) cycle
|
|
if(banned(puti, putj, bant)) cycle ! rentable?
|
|
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
|
|
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
|
|
call i_h_j(gen, det, N_int, hij)
|
|
if (hij == 0.d0) cycle
|
|
else
|
|
hij = hij_cache1(putj) - hij_cache2(putj)
|
|
if (hij == 0.d0) cycle
|
|
hij = hij * get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
|
|
end if
|
|
!DIR$ LOOP COUNT AVG(4)
|
|
do k=1,N_states
|
|
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
|
|
enddo
|
|
end do
|
|
end do
|
|
end if
|
|
|
|
deallocate(hij_cache1,hij_cache2)
|
|
end
|
|
|
|
|
|
subroutine past_d1(bannedOrb, p)
|
|
use bitmasks
|
|
implicit none
|
|
|
|
logical, intent(inout) :: bannedOrb(mo_num, 2)
|
|
integer, intent(in) :: p(0:4, 2)
|
|
integer :: i,s
|
|
|
|
do s = 1, 2
|
|
do i = 1, p(0, s)
|
|
bannedOrb(p(i, s), s) = .true.
|
|
end do
|
|
end do
|
|
end
|
|
|
|
|
|
subroutine past_d2(banned, p, sp)
|
|
use bitmasks
|
|
implicit none
|
|
|
|
logical, intent(inout) :: banned(mo_num, mo_num)
|
|
integer, intent(in) :: p(0:4, 2), sp
|
|
integer :: i,j
|
|
|
|
if(sp == 3) then
|
|
do j=1,p(0,2)
|
|
do i=1,p(0,1)
|
|
banned(p(i,1), p(j,2)) = .true.
|
|
end do
|
|
end do
|
|
else
|
|
do i=1,p(0, sp)
|
|
do j=1,i-1
|
|
banned(p(j,sp), p(i,sp)) = .true.
|
|
banned(p(i,sp), p(j,sp)) = .true.
|
|
end do
|
|
end do
|
|
end if
|
|
end
|
|
|
|
subroutine spot_isinwf(mask, det, i_gen, N, banned, fullMatch, interesting)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Identify the determinants in det that are in the internal space. These are
|
|
! the determinants that can be produced by creating two particles on the mask.
|
|
END_DOC
|
|
|
|
integer, intent(in) :: i_gen, N
|
|
integer, intent(in) :: interesting(0:N)
|
|
integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N)
|
|
logical, intent(inout) :: banned(mo_num, mo_num)
|
|
logical, intent(out) :: fullMatch
|
|
|
|
|
|
integer :: i, j, na, nb, list(3)
|
|
integer(bit_kind) :: myMask(N_int, 2), negMask(N_int, 2)
|
|
|
|
fullMatch = .false.
|
|
|
|
do i=1,N_int
|
|
negMask(i,1) = not(mask(i,1))
|
|
negMask(i,2) = not(mask(i,2))
|
|
end do
|
|
|
|
genl : do i=1, N
|
|
! If det(i) can't be generated by the mask, cycle
|
|
do j=1, N_int
|
|
if(iand(det(j,1,i), mask(j,1)) /= mask(j, 1)) cycle genl
|
|
if(iand(det(j,2,i), mask(j,2)) /= mask(j, 2)) cycle genl
|
|
end do
|
|
|
|
! If det(i) < det(i_gen), it has already been considered
|
|
if(interesting(i) < i_gen) then
|
|
fullMatch = .true.
|
|
return
|
|
end if
|
|
|
|
! Identify the particles
|
|
do j=1, N_int
|
|
myMask(j, 1) = iand(det(j, 1, i), negMask(j, 1))
|
|
myMask(j, 2) = iand(det(j, 2, i), negMask(j, 2))
|
|
end do
|
|
|
|
call bitstring_to_list_in_selection(myMask(1,1), list(1), na, N_int)
|
|
call bitstring_to_list_in_selection(myMask(1,2), list(na+1), nb, N_int)
|
|
banned(list(1), list(2)) = .true.
|
|
end do genl
|
|
end
|
|
|
|
|
|
subroutine bitstring_to_list_in_selection( string, list, n_elements, Nint)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Gives the indices(+1) of the bits set to 1 in the bit string
|
|
END_DOC
|
|
integer, intent(in) :: Nint
|
|
integer(bit_kind), intent(in) :: string(Nint)
|
|
integer, intent(out) :: list(Nint*bit_kind_size)
|
|
integer, intent(out) :: n_elements
|
|
|
|
integer :: i, ishift
|
|
integer(bit_kind) :: l
|
|
|
|
n_elements = 0
|
|
ishift = 2
|
|
do i=1,Nint
|
|
l = string(i)
|
|
do while (l /= 0_bit_kind)
|
|
n_elements = n_elements+1
|
|
list(n_elements) = ishift+popcnt(l-1_bit_kind) - popcnt(l)
|
|
l = iand(l,l-1_bit_kind)
|
|
enddo
|
|
ishift = ishift + bit_kind_size
|
|
enddo
|
|
|
|
end
|
|
!
|
|
|
|
|
|
|
|
|
|
|