mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-04-27 10:44:43 +02:00
78 lines
2.9 KiB
Fortran
78 lines
2.9 KiB
Fortran
BEGIN_PROVIDER [double precision, extra_e_contrib_density]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Extra contribution to the SCF energy coming from the density.
|
|
!
|
|
! For a Hartree-Fock calculation: extra_e_contrib_density = 0
|
|
!
|
|
! For a Kohn-Sham or Range-separated Kohn-Sham: the exchange/correlation - trace of the V_xc potential
|
|
END_DOC
|
|
extra_e_contrib_density = 0.D0
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, hf_energy]
|
|
&BEGIN_PROVIDER [ double precision, hf_two_electron_energy]
|
|
&BEGIN_PROVIDER [ double precision, hf_two_electron_energy_jk, (2)]
|
|
&BEGIN_PROVIDER [ double precision, hf_one_electron_energy]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components.
|
|
END_DOC
|
|
integer :: i,j,k,jk
|
|
hf_energy = nuclear_repulsion
|
|
hf_two_electron_energy = 0.d0
|
|
hf_two_electron_energy_jk = 0.d0
|
|
hf_one_electron_energy = 0.d0
|
|
if (is_complex) then
|
|
complex*16 :: hf_1e_tmp, hf_2e_tmp, hf_2e_tmp_jk(2)
|
|
hf_1e_tmp = (0.d0,0.d0)
|
|
hf_2e_tmp = (0.d0,0.d0)
|
|
hf_2e_tmp_jk = (0.d0,0.d0)
|
|
do k=1,kpt_num
|
|
do j=1,ao_num_per_kpt
|
|
do i=1,ao_num_per_kpt
|
|
hf_2e_tmp += 0.5d0 * ( ao_two_e_integral_alpha_kpts(i,j,k) * scf_density_matrix_ao_alpha_kpts(j,i,k) &
|
|
+ao_two_e_integral_beta_kpts(i,j,k) * scf_density_matrix_ao_beta_kpts(j,i,k) )
|
|
hf_1e_tmp += ao_one_e_integrals_kpts(i,j,k) * (scf_density_matrix_ao_alpha_kpts(j,i,k) &
|
|
+ scf_density_matrix_ao_beta_kpts (j,i,k) )
|
|
do jk=1,2
|
|
hf_2e_tmp_jk(jk) += 0.5d0 * ( ao_two_e_integral_alpha_kpts_jk(i,j,k,jk) * scf_density_matrix_ao_alpha_kpts(j,i,k) &
|
|
+ao_two_e_integral_beta_kpts_jk(i,j,k,jk) * scf_density_matrix_ao_beta_kpts(j,i,k) )
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
do jk=1,2
|
|
if (dabs(dimag(hf_2e_tmp_jk(jk))).gt.1.d-10) then
|
|
print*,'HF_2e energy (jk) should be real:',jk,irp_here
|
|
stop -1
|
|
else
|
|
hf_two_electron_energy_jk(jk) = dble(hf_2e_tmp_jk(jk))
|
|
endif
|
|
enddo
|
|
if (dabs(dimag(hf_2e_tmp)).gt.1.d-10) then
|
|
print*,'HF_2e energy should be real:',irp_here
|
|
stop -1
|
|
else
|
|
hf_two_electron_energy = dble(hf_2e_tmp)
|
|
endif
|
|
if (dabs(dimag(hf_1e_tmp)).gt.1.d-10) then
|
|
print*,'HF_1e energy should be real:',irp_here
|
|
stop -1
|
|
else
|
|
hf_one_electron_energy = dble(hf_1e_tmp)
|
|
endif
|
|
else
|
|
do j=1,ao_num
|
|
do i=1,ao_num
|
|
hf_two_electron_energy += 0.5d0 * ( ao_two_e_integral_alpha(i,j) * scf_density_matrix_ao_alpha(i,j) &
|
|
+ao_two_e_integral_beta(i,j) * scf_density_matrix_ao_beta(i,j) )
|
|
hf_one_electron_energy += ao_one_e_integrals(i,j) * (scf_density_matrix_ao_alpha(i,j) + scf_density_matrix_ao_beta (i,j) )
|
|
enddo
|
|
enddo
|
|
endif
|
|
hf_energy += hf_two_electron_energy + hf_one_electron_energy
|
|
END_PROVIDER
|
|
|