mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-09-16 12:45:31 +02:00
310 lines
9.9 KiB
Fortran
310 lines
9.9 KiB
Fortran
BEGIN_TEMPLATE
|
|
|
|
subroutine pt2_epstein_nesbet ($arguments)
|
|
use bitmasks
|
|
implicit none
|
|
$declarations
|
|
|
|
BEGIN_DOC
|
|
! Compute the standard Epstein-Nesbet perturbative first order coefficient and
|
|
! second order energetic contribution for the various N_st states.
|
|
!
|
|
! `c_pert(i)` = $\\frac{\langle i|H|\\alpha \\rangle}{ E_n - \\langle \\alpha|H|\\alpha \\rangle }$.
|
|
!
|
|
! `e_2_pert(i)` = $\\frac{\\langle i|H|\\alpha \\rangle^2}{ E_n - \\langle \\alpha|H|\\alpha \\rangle }$.
|
|
!
|
|
END_DOC
|
|
|
|
integer :: i,j
|
|
double precision :: diag_H_mat_elem_fock, h
|
|
double precision :: i_H_psi_array(N_st)
|
|
PROVIDE selection_criterion
|
|
|
|
ASSERT (Nint == N_int)
|
|
ASSERT (Nint > 0)
|
|
!call i_H_psi(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array)
|
|
call i_H_psi_minilist(det_pert,minilist,idx_minilist,N_minilist,psi_selectors_coef,Nint,N_minilist,psi_selectors_size,N_st,i_H_psi_array)
|
|
|
|
|
|
h = diag_H_mat_elem_fock(det_ref,det_pert,fock_diag_tmp,Nint)
|
|
do i =1,N_st
|
|
if(electronic_energy(i)>h.and.electronic_energy(i).ne.0.d0)then
|
|
c_pert(i) = -1.d0
|
|
e_2_pert(i) = selection_criterion*selection_criterion_factor*2.d0
|
|
else if (dabs(electronic_energy(i) - h) > 1.d-6) then
|
|
c_pert(i) = i_H_psi_array(i) / (electronic_energy(i) - h)
|
|
H_pert_diag(i) = h*c_pert(i)*c_pert(i)
|
|
e_2_pert(i) = c_pert(i) * i_H_psi_array(i)
|
|
else
|
|
c_pert(i) = -1.d0
|
|
e_2_pert(i) = -dabs(i_H_psi_array(i))
|
|
H_pert_diag(i) = h
|
|
endif
|
|
enddo
|
|
|
|
end
|
|
|
|
subroutine pt2_qdpt ($arguments)
|
|
use bitmasks
|
|
implicit none
|
|
$declarations
|
|
|
|
BEGIN_DOC
|
|
! Computes the QDPT first order coefficient and second order energetic contribution
|
|
! for the various N_st states.
|
|
!
|
|
! `c_pert(i)` = $\\frac{\\langle i|H|\\alpha \\rangle}{\\langle i|H|i \\rangle - \\langle \\alpha|H|\\alpha \\rangle}$.
|
|
!
|
|
END_DOC
|
|
|
|
integer :: i,j
|
|
double precision :: diag_H_mat_elem_fock, h, E, diag_H_mat_elem, hij
|
|
double precision :: i_H_psi_array(N_st)
|
|
integer :: degree
|
|
double precision :: delta_E
|
|
PROVIDE selection_criterion
|
|
|
|
ASSERT (Nint == N_int)
|
|
ASSERT (Nint > 0)
|
|
!call i_H_psi(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array)
|
|
call i_H_psi_minilist(det_pert,minilist,idx_minilist,N_minilist,psi_selectors_coef,Nint,N_minilist,psi_selectors_size,N_st,i_H_psi_array)
|
|
|
|
|
|
h = diag_H_mat_elem_fock(det_ref,det_pert,fock_diag_tmp,Nint)
|
|
c_pert = 0.d0
|
|
do j=1,N_det_selectors
|
|
call get_excitation_degree(det_ref, psi_selectors(1,1,j), degree, Nint)
|
|
if (degree > 2) then
|
|
E = diag_H_mat_elem(psi_selectors(1,1,j),Nint)
|
|
else
|
|
E = diag_H_mat_elem_fock(det_ref,det_ref,fock_diag_tmp,Nint)
|
|
endif
|
|
delta_E = E-h
|
|
! delta_E = electronic_energy(1) - h
|
|
call i_H_j(psi_selectors(1,1,j),det_pert,Nint,hij)
|
|
if (dabs(delta_e) > 1.d-3) then
|
|
do i =1,N_st
|
|
c_pert(i) += psi_selectors_coef(j,i) * hij / delta_e
|
|
enddo
|
|
endif
|
|
enddo
|
|
do i =1,N_st
|
|
e_2_pert(i) = c_pert(i)*i_H_psi_array(i)
|
|
H_pert_diag(i) = h*c_pert(i)*c_pert(i)
|
|
enddo
|
|
|
|
end
|
|
|
|
|
|
subroutine pt2_epstein_nesbet_2x2 ($arguments)
|
|
use bitmasks
|
|
implicit none
|
|
$declarations
|
|
|
|
BEGIN_DOC
|
|
! Computes the Epstein-Nesbet 2x2 diagonalization coefficient and energetic contribution
|
|
! for the various N_st states.
|
|
!
|
|
! `e_2_pert(i)` = $\\frac{1}{2} ( \\langle \\alpha|H|\\alpha \\rangle - E_n) - \\sqrt{ (\\langle \\alpha|H|\\alpha \\rangle - E_n)^2 + 4 \\langle i|H|\\alpha \\rangle^2 }$.
|
|
!
|
|
! `c_pert(i)` = `e_2_pert(i)` $\\times \\frac{1}{ \\langle i|H|\\alpha \\rangle}$.
|
|
!
|
|
END_DOC
|
|
|
|
integer :: i,j
|
|
double precision :: diag_H_mat_elem_fock,delta_e, h
|
|
double precision :: i_H_psi_array(N_st)
|
|
ASSERT (Nint == N_int)
|
|
ASSERT (Nint > 0)
|
|
|
|
call i_H_psi(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array)
|
|
!call i_H_psi_minilist(det_pert,minilist,idx_minilist,N_minilist,psi_selectors_coef,Nint,N_minilist,psi_selectors_size,N_st,i_H_psi_array)
|
|
|
|
h = diag_H_mat_elem_fock(det_ref,det_pert,fock_diag_tmp,Nint)
|
|
do i =1,N_st
|
|
if (i_H_psi_array(i) /= 0.d0) then
|
|
delta_e = h - electronic_energy(i)
|
|
if (delta_e > 0.d0) then
|
|
e_2_pert(i) = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * i_H_psi_array(i) * i_H_psi_array(i)))
|
|
else
|
|
e_2_pert(i) = 0.5d0 * (delta_e + dsqrt(delta_e * delta_e + 4.d0 * i_H_psi_array(i) * i_H_psi_array(i)))
|
|
endif
|
|
if (dabs(i_H_psi_array(i)) > 1.d-6) then
|
|
c_pert(i) = e_2_pert(i)/i_H_psi_array(i)
|
|
else
|
|
c_pert(i) = 0.d0
|
|
endif
|
|
H_pert_diag(i) = h*c_pert(i)*c_pert(i)
|
|
else
|
|
e_2_pert(i) = 0.d0
|
|
c_pert(i) = 0.d0
|
|
H_pert_diag(i) = 0.d0
|
|
endif
|
|
enddo
|
|
|
|
end
|
|
|
|
|
|
|
|
subroutine pt2_epstein_nesbet_2x2_no_ci_diag($arguments)
|
|
use bitmasks
|
|
implicit none
|
|
$declarations
|
|
|
|
BEGIN_DOC
|
|
! compute the Epstein-Nesbet 2x2 diagonalization coefficient and energetic contribution
|
|
!
|
|
! for the various N_st states.
|
|
!
|
|
! e_2_pert(i) = 0.5 * (( <det_pert|H|det_pert> - E(i) ) - sqrt( ( <det_pert|H|det_pert> - E(i)) ^2 + 4 <psi(i)|H|det_pert>^2 )
|
|
!
|
|
! c_pert(i) = e_2_pert(i)/ <psi(i)|H|det_pert>
|
|
!
|
|
END_DOC
|
|
|
|
integer :: i,j
|
|
double precision :: diag_H_mat_elem_fock,delta_e, h
|
|
double precision :: i_H_psi_array(N_st)
|
|
ASSERT (Nint == N_int)
|
|
ASSERT (Nint > 0)
|
|
PROVIDE psi_energy
|
|
|
|
call i_H_psi(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array)
|
|
|
|
h = diag_H_mat_elem_fock(det_ref,det_pert,fock_diag_tmp,Nint)
|
|
do i =1,N_st
|
|
if (i_H_psi_array(i) /= 0.d0) then
|
|
delta_e = h - psi_energy(i)
|
|
if (delta_e > 0.d0) then
|
|
e_2_pert(i) = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * i_H_psi_array(i) * i_H_psi_array(i)))
|
|
else
|
|
e_2_pert(i) = 0.5d0 * (delta_e + dsqrt(delta_e * delta_e + 4.d0 * i_H_psi_array(i) * i_H_psi_array(i)))
|
|
endif
|
|
if (dabs(i_H_psi_array(i)) > 1.d-6) then
|
|
c_pert(i) = e_2_pert(i)/i_H_psi_array(i)
|
|
else
|
|
c_pert(i) = 0.d0
|
|
endif
|
|
H_pert_diag(i) = h*c_pert(i)*c_pert(i)
|
|
else
|
|
e_2_pert(i) = 0.d0
|
|
c_pert(i) = 0.d0
|
|
H_pert_diag(i) = 0.d0
|
|
endif
|
|
enddo
|
|
|
|
end
|
|
|
|
|
|
|
|
subroutine pt2_moller_plesset ($arguments)
|
|
use bitmasks
|
|
implicit none
|
|
$declarations
|
|
|
|
BEGIN_DOC
|
|
! Computes the standard Moller-Plesset perturbative first order coefficient and second
|
|
! order energetic contribution for the various N_st states.
|
|
!
|
|
! `c_pert(i)` = $\\frac{\\langle i|H|\\alpha \\rangle}{\\text{difference of orbital energies}}$.
|
|
!
|
|
! `e_2_pert(i)` = $\\frac{\\langle i|H|\\alpha \\rangle^2}{\\text{difference of orbital energies}}$.
|
|
!
|
|
END_DOC
|
|
|
|
integer :: i,j
|
|
double precision :: diag_H_mat_elem_fock
|
|
integer :: exc(0:2,2,2)
|
|
integer :: degree
|
|
double precision :: phase,delta_e,h
|
|
double precision :: i_H_psi_array(N_st)
|
|
integer :: h1,h2,p1,p2,s1,s2
|
|
ASSERT (Nint == N_int)
|
|
ASSERT (Nint > 0)
|
|
call get_excitation(ref_bitmask,det_pert,exc,degree,phase,Nint)
|
|
if (degree == 2) then
|
|
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
|
|
delta_e = (Fock_matrix_diag_mo(h1) - Fock_matrix_diag_mo(p1)) + &
|
|
(Fock_matrix_diag_mo(h2) - Fock_matrix_diag_mo(p2))
|
|
else if (degree == 1) then
|
|
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
|
|
delta_e = Fock_matrix_diag_mo(h1) - Fock_matrix_diag_mo(p1)
|
|
else
|
|
delta_e = 0.d0
|
|
endif
|
|
|
|
if (dabs(delta_e) > 1.d-10) then
|
|
delta_e = 1.d0/delta_e
|
|
call i_H_psi_minilist(det_pert,minilist,idx_minilist,N_minilist,psi_selectors_coef,Nint,N_minilist,psi_selectors_size,N_st,i_H_psi_array)
|
|
h = diag_H_mat_elem_fock(det_ref,det_pert,fock_diag_tmp,Nint)
|
|
else
|
|
i_H_psi_array(:) = 0.d0
|
|
h = 0.d0
|
|
endif
|
|
do i =1,N_st
|
|
H_pert_diag(i) = h
|
|
c_pert(i) = i_H_psi_array(i) *delta_e
|
|
e_2_pert(i) = c_pert(i) * i_H_psi_array(i)
|
|
enddo
|
|
|
|
end
|
|
|
|
subroutine pt2_dummy ($arguments)
|
|
use bitmasks
|
|
implicit none
|
|
$declarations
|
|
|
|
BEGIN_DOC
|
|
! Dummy perturbation to add all connected determinants.
|
|
END_DOC
|
|
|
|
integer :: i,j
|
|
double precision :: diag_H_mat_elem_fock, h
|
|
double precision :: i_H_psi_array(N_st)
|
|
PROVIDE selection_criterion
|
|
|
|
call i_H_psi_minilist(det_pert,minilist,idx_minilist,N_minilist,psi_selectors_coef,Nint,N_minilist,psi_selectors_size,N_st,i_H_psi_array)
|
|
|
|
h = diag_H_mat_elem_fock(det_ref,det_pert,fock_diag_tmp,Nint)
|
|
do i =1,N_st
|
|
if (i_H_psi_array(i) /= 0.d0) then
|
|
c_pert(i) = i_H_psi_array(i) / (electronic_energy(i) - h)
|
|
H_pert_diag(i) = h*c_pert(i)*c_pert(i)
|
|
e_2_pert(i) = 1.d0
|
|
else
|
|
c_pert(i) = 0.d0
|
|
e_2_pert(i) = 0.d0
|
|
H_pert_diag(i) = 0.d0
|
|
endif
|
|
enddo
|
|
|
|
end
|
|
|
|
|
|
|
|
SUBST [ arguments, declarations ]
|
|
|
|
electronic_energy,det_ref,det_pert,fock_diag_tmp,c_pert,e_2_pert,H_pert_diag,Nint,ndet,N_st,minilist,idx_minilist,N_minilist ;
|
|
|
|
integer, intent(in) :: Nint
|
|
integer, intent(in) :: ndet
|
|
integer, intent(in) :: N_st
|
|
integer, intent(in) :: N_minilist
|
|
integer(bit_kind), intent(in) :: det_ref (Nint,2)
|
|
integer(bit_kind), intent(in) :: det_pert(Nint,2)
|
|
double precision , intent(in) :: fock_diag_tmp(2,mo_num+1)
|
|
double precision , intent(in) :: electronic_energy(N_st)
|
|
double precision , intent(out) :: c_pert(N_st)
|
|
double precision , intent(out) :: e_2_pert(N_st)
|
|
double precision, intent(out) :: H_pert_diag(N_st)
|
|
integer, intent(in) :: idx_minilist(0:N_det_selectors)
|
|
integer(bit_kind), intent(in) :: minilist(Nint,2,N_det_selectors)
|
|
;;
|
|
|
|
|
|
END_TEMPLATE
|
|
|
|
! Note : If the arguments are changed here, they should also be changed accordingly in
|
|
! the perturbation.template.f file.
|
|
|