mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-09-09 01:14:46 +02:00
137 lines
3.2 KiB
Fortran
137 lines
3.2 KiB
Fortran
! Diagonalization of the hessian
|
|
|
|
! Just a matrix diagonalization using Lapack
|
|
|
|
! Input:
|
|
! | n | integer | mo_num*(mo_num-1)/2 |
|
|
! | H(n,n) | double precision | hessian |
|
|
|
|
! Output:
|
|
! | e_val(n) | double precision | eigenvalues of the hessian |
|
|
! | w(n,n) | double precision | eigenvectors of the hessian |
|
|
|
|
! Internal:
|
|
! | nb_negative_nv | integer | number of negative eigenvalues |
|
|
! | lwork | integer | for Lapack |
|
|
! | work(lwork,n) | double precision | temporary array for Lapack |
|
|
! | info | integer | if 0 -> ok, else problem in the diagonalization |
|
|
! | i,j | integer | dummy indexes |
|
|
|
|
|
|
subroutine diagonalization_hessian(n,H,e_val,w)
|
|
|
|
include 'constants.h'
|
|
|
|
implicit none
|
|
|
|
! Variables
|
|
|
|
! in
|
|
integer, intent(in) :: n
|
|
double precision, intent(in) :: H(n,n)
|
|
|
|
! out
|
|
double precision, intent(out) :: e_val(n), w(n,n)
|
|
|
|
! internal
|
|
double precision, allocatable :: work(:,:)
|
|
integer, allocatable :: key(:)
|
|
integer :: info,lwork
|
|
integer :: i,j
|
|
integer :: nb_negative_vp
|
|
double precision :: t1,t2,t3,max_elem
|
|
|
|
print*,''
|
|
print*,'---Diagonalization_hessian---'
|
|
|
|
call wall_time(t1)
|
|
|
|
if (optimization_method == 'full') then
|
|
! Allocation
|
|
! For Lapack
|
|
lwork=3*n-1
|
|
|
|
allocate(work(lwork,n))
|
|
|
|
! Calculation
|
|
|
|
! Copy the hessian matrix, the eigenvectors will be store in W
|
|
W=H
|
|
|
|
! Diagonalization of the hessian
|
|
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info)
|
|
|
|
if (info /= 0) then
|
|
print*, 'Error diagonalization : diagonalization_hessian'
|
|
print*, 'info = ', info
|
|
call ABORT
|
|
endif
|
|
|
|
if (debug) then
|
|
print *, 'vp Hess:'
|
|
write(*,'(100(F10.5))') real(e_val(:))
|
|
endif
|
|
|
|
! Number of negative eigenvalues
|
|
max_elem = 0d0
|
|
nb_negative_vp = 0
|
|
do i = 1, n
|
|
if (e_val(i) < 0d0) then
|
|
nb_negative_vp = nb_negative_vp + 1
|
|
if (e_val(i) < max_elem) then
|
|
max_elem = e_val(i)
|
|
endif
|
|
!print*,'e_val < 0 :', e_val(i)
|
|
endif
|
|
enddo
|
|
print*,'Number of negative eigenvalues:', nb_negative_vp
|
|
print*,'Lowest eigenvalue:',max_elem
|
|
|
|
!nb_negative_vp = 0
|
|
!do i = 1, n
|
|
! if (e_val(i) < -thresh_eig) then
|
|
! nb_negative_vp = nb_negative_vp + 1
|
|
! endif
|
|
!enddo
|
|
!print*,'Number of negative eigenvalues <', -thresh_eig,':', nb_negative_vp
|
|
|
|
! Deallocation
|
|
deallocate(work)
|
|
|
|
elseif (optimization_method == 'diag') then
|
|
! Diagonalization of the diagonal hessian by hands
|
|
allocate(key(n))
|
|
|
|
do i = 1, n
|
|
e_val(i) = H(i,i)
|
|
enddo
|
|
|
|
! Key list for dsort
|
|
do i = 1, n
|
|
key(i) = i
|
|
enddo
|
|
|
|
! Sort of the eigenvalues
|
|
call dsort(e_val, key, n)
|
|
|
|
! Eigenvectors
|
|
W = 0d0
|
|
do i = 1, n
|
|
j = key(i)
|
|
W(j,i) = 1d0
|
|
enddo
|
|
|
|
deallocate(key)
|
|
else
|
|
print*,'Diagonalization_hessian, abort'
|
|
call abort
|
|
endif
|
|
|
|
call wall_time(t2)
|
|
t3 = t2 - t1
|
|
print*,'Time in diagonalization_hessian:', t3
|
|
|
|
print*,'---End diagonalization_hessian---'
|
|
|
|
end subroutine
|