9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-09-09 01:14:46 +02:00
qp2/src/mo_optimization/diagonalization_hessian.irp.f
2023-04-18 13:56:30 +02:00

137 lines
3.2 KiB
Fortran

! Diagonalization of the hessian
! Just a matrix diagonalization using Lapack
! Input:
! | n | integer | mo_num*(mo_num-1)/2 |
! | H(n,n) | double precision | hessian |
! Output:
! | e_val(n) | double precision | eigenvalues of the hessian |
! | w(n,n) | double precision | eigenvectors of the hessian |
! Internal:
! | nb_negative_nv | integer | number of negative eigenvalues |
! | lwork | integer | for Lapack |
! | work(lwork,n) | double precision | temporary array for Lapack |
! | info | integer | if 0 -> ok, else problem in the diagonalization |
! | i,j | integer | dummy indexes |
subroutine diagonalization_hessian(n,H,e_val,w)
include 'constants.h'
implicit none
! Variables
! in
integer, intent(in) :: n
double precision, intent(in) :: H(n,n)
! out
double precision, intent(out) :: e_val(n), w(n,n)
! internal
double precision, allocatable :: work(:,:)
integer, allocatable :: key(:)
integer :: info,lwork
integer :: i,j
integer :: nb_negative_vp
double precision :: t1,t2,t3,max_elem
print*,''
print*,'---Diagonalization_hessian---'
call wall_time(t1)
if (optimization_method == 'full') then
! Allocation
! For Lapack
lwork=3*n-1
allocate(work(lwork,n))
! Calculation
! Copy the hessian matrix, the eigenvectors will be store in W
W=H
! Diagonalization of the hessian
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info)
if (info /= 0) then
print*, 'Error diagonalization : diagonalization_hessian'
print*, 'info = ', info
call ABORT
endif
if (debug) then
print *, 'vp Hess:'
write(*,'(100(F10.5))') real(e_val(:))
endif
! Number of negative eigenvalues
max_elem = 0d0
nb_negative_vp = 0
do i = 1, n
if (e_val(i) < 0d0) then
nb_negative_vp = nb_negative_vp + 1
if (e_val(i) < max_elem) then
max_elem = e_val(i)
endif
!print*,'e_val < 0 :', e_val(i)
endif
enddo
print*,'Number of negative eigenvalues:', nb_negative_vp
print*,'Lowest eigenvalue:',max_elem
!nb_negative_vp = 0
!do i = 1, n
! if (e_val(i) < -thresh_eig) then
! nb_negative_vp = nb_negative_vp + 1
! endif
!enddo
!print*,'Number of negative eigenvalues <', -thresh_eig,':', nb_negative_vp
! Deallocation
deallocate(work)
elseif (optimization_method == 'diag') then
! Diagonalization of the diagonal hessian by hands
allocate(key(n))
do i = 1, n
e_val(i) = H(i,i)
enddo
! Key list for dsort
do i = 1, n
key(i) = i
enddo
! Sort of the eigenvalues
call dsort(e_val, key, n)
! Eigenvectors
W = 0d0
do i = 1, n
j = key(i)
W(j,i) = 1d0
enddo
deallocate(key)
else
print*,'Diagonalization_hessian, abort'
call abort
endif
call wall_time(t2)
t3 = t2 - t1
print*,'Time in diagonalization_hessian:', t3
print*,'---End diagonalization_hessian---'
end subroutine