mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-02 19:53:36 +01:00
104 lines
3.4 KiB
Fortran
104 lines
3.4 KiB
Fortran
program cisd
|
||
implicit none
|
||
BEGIN_DOC
|
||
! Configuration Interaction with Single and Double excitations.
|
||
!
|
||
! This program takes a reference Slater determinant of ROHF-like occupancy,
|
||
!
|
||
! and performs all single and double excitations on top of it, disregarding
|
||
! spatial symmetry and compute the "n_states" lowest eigenstates of that CI
|
||
! matrix (see :option:`determinants n_states`).
|
||
!
|
||
! This program can be useful in many cases:
|
||
!
|
||
! * **Ground state calculation**: if even after a :c:func:`cis` calculation, natural
|
||
! orbitals (see :c:func:`save_natorb`) and then :c:func:`scf` optimization, you are not sure to have the lowest scf
|
||
! solution,
|
||
! do the same strategy with the :c:func:`cisd` executable instead of the :c:func:`cis` exectuable to generate the natural
|
||
! orbitals as a guess for the :c:func:`scf`.
|
||
!
|
||
!
|
||
!
|
||
! * **Excited states calculations**: the lowest excited states are much likely to
|
||
! be dominanted by single- or double-excitations.
|
||
! Therefore, running a :c:func:`cisd` will save the "n_states" lowest states within
|
||
! the CISD space
|
||
! in the |EZFIO| directory, which can afterward be used as guess wave functions
|
||
! for a further multi-state fci calculation if you specify "read_wf" = True
|
||
! before running the fci executable (see :option:`determinants read_wf`).
|
||
! Also, if you specify "s2_eig" = True, the cisd will only retain states
|
||
! having the good value :math:`S^2` value
|
||
! (see :option:`determinants expected_s2` and :option:`determinants s2_eig`).
|
||
! If "s2_eig" = False, it will take the lowest n_states, whatever
|
||
! multiplicity they are.
|
||
!
|
||
!
|
||
!
|
||
! Note: if you would like to discard some orbitals, use
|
||
! :ref:`qp_set_mo_class` to specify:
|
||
!
|
||
! * "core" orbitals which will be always doubly occupied
|
||
!
|
||
! * "act" orbitals where an electron can be either excited from or to
|
||
!
|
||
! * "del" orbitals which will be never occupied
|
||
!
|
||
END_DOC
|
||
PROVIDE N_states
|
||
read_wf = .False.
|
||
SOFT_TOUCH read_wf
|
||
call run
|
||
end
|
||
|
||
subroutine run
|
||
implicit none
|
||
integer :: i,k
|
||
double precision :: cisdq(N_states), delta_e
|
||
double precision,external :: diag_h_mat_elem
|
||
|
||
if(pseudo_sym)then
|
||
call H_apply_cisd_sym
|
||
else
|
||
call H_apply_cisd
|
||
endif
|
||
psi_coef = ci_eigenvectors
|
||
SOFT_TOUCH psi_coef
|
||
call save_wavefunction
|
||
call ezfio_set_cisd_energy(CI_energy)
|
||
|
||
do i = 1,N_states
|
||
k = maxloc(dabs(psi_coef_sorted(1:N_det,i)),dim=1)
|
||
delta_E = CI_electronic_energy(i) - diag_h_mat_elem(psi_det_sorted(1,1,k),N_int)
|
||
cisdq(i) = CI_energy(i) + delta_E * (1.d0 - psi_coef_sorted(k,i)**2)
|
||
enddo
|
||
print *, 'N_det = ', N_det
|
||
print*,''
|
||
print*,'******************************'
|
||
print *, 'CISD Energies'
|
||
do i = 1,N_states
|
||
print *, i, CI_energy(i)
|
||
enddo
|
||
print*,''
|
||
print*,'******************************'
|
||
print *, 'CISD+Q Energies'
|
||
do i = 1,N_states
|
||
print *, i, cisdq(i)
|
||
enddo
|
||
if (N_states > 1) then
|
||
print*,''
|
||
print*,'******************************'
|
||
print*,'Excitation energies (au) (CISD+Q)'
|
||
do i = 2, N_states
|
||
print*, i ,CI_energy(i) - CI_energy(1), cisdq(i) - cisdq(1)
|
||
enddo
|
||
print*,''
|
||
print*,'******************************'
|
||
print*,'Excitation energies (eV) (CISD+Q)'
|
||
do i = 2, N_states
|
||
print*, i ,(CI_energy(i) - CI_energy(1))/0.0367502d0, &
|
||
(cisdq(i) - cisdq(1)) / 0.0367502d0
|
||
enddo
|
||
endif
|
||
|
||
end
|