9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-10-10 09:51:31 +02:00
qp2/src/ao_two_e_ints/map_integrals.irp.f
Anthony Scemama c80ebe27b8
Some checks failed
continuous-integration/drone/push Build is failing
Introducing Cholesky-decomposed SCF
2023-04-28 11:39:53 +02:00

704 lines
19 KiB
Fortran

use map_module
!! AO Map
!! ======
BEGIN_PROVIDER [ type(map_type), ao_integrals_map ]
implicit none
BEGIN_DOC
! AO integrals
END_DOC
integer(key_kind) :: key_max
integer(map_size_kind) :: sze
call two_e_integrals_index(ao_num,ao_num,ao_num,ao_num,key_max)
sze = key_max
call map_init(ao_integrals_map,sze)
print*, 'AO map initialized : ', sze
END_PROVIDER
subroutine two_e_integrals_index(i,j,k,l,i1)
use map_module
implicit none
BEGIN_DOC
! Gives a unique index for i,j,k,l using permtuation symmetry.
! i <-> k, j <-> l, and (i,k) <-> (j,l) for non-periodic systems
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind), intent(out) :: i1
integer(key_kind) :: p,q,r,s,i2
p = min(i,k)
r = max(i,k)
p = p+shiftr(r*r-r,1)
q = min(j,l)
s = max(j,l)
q = q+shiftr(s*s-s,1)
i1 = min(p,q)
i2 = max(p,q)
i1 = i1+shiftr(i2*i2-i2,1)
end
subroutine two_e_integrals_index_reverse(i,j,k,l,i1)
use map_module
implicit none
BEGIN_DOC
! Computes the 4 indices $i,j,k,l$ from a unique index $i_1$.
! For 2 indices $i,j$ and $i \le j$, we have
! $p = i(i-1)/2 + j$.
! The key point is that because $j < i$,
! $i(i-1)/2 < p \le i(i+1)/2$. So $i$ can be found by solving
! $i^2 - i - 2p=0$. One obtains $i=1 + \sqrt{1+8p}/2$
! and $j = p - i(i-1)/2$.
! This rule is applied 3 times. First for the symmetry of the
! pairs (i,k) and (j,l), and then for the symmetry within each pair.
END_DOC
integer, intent(out) :: i(8),j(8),k(8),l(8)
integer(key_kind), intent(in) :: i1
integer(key_kind) :: i2,i3
i = 0
i2 = ceiling(0.5d0*(dsqrt(dble(shiftl(i1,3)+1))-1.d0))
l(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i2,3)+1))-1.d0))
i3 = i1 - shiftr(i2*i2-i2,1)
k(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i3,3)+1))-1.d0))
j(1) = int(i2 - shiftr(l(1)*l(1)-l(1),1),4)
i(1) = int(i3 - shiftr(k(1)*k(1)-k(1),1),4)
!ijkl
i(2) = i(1) !ilkj
j(2) = l(1)
k(2) = k(1)
l(2) = j(1)
i(3) = k(1) !kjil
j(3) = j(1)
k(3) = i(1)
l(3) = l(1)
i(4) = k(1) !klij
j(4) = l(1)
k(4) = i(1)
l(4) = j(1)
i(5) = j(1) !jilk
j(5) = i(1)
k(5) = l(1)
l(5) = k(1)
i(6) = j(1) !jkli
j(6) = k(1)
k(6) = l(1)
l(6) = i(1)
i(7) = l(1) !lijk
j(7) = i(1)
k(7) = j(1)
l(7) = k(1)
i(8) = l(1) !lkji
j(8) = k(1)
k(8) = j(1)
l(8) = i(1)
integer :: ii, jj
do ii=2,8
do jj=1,ii-1
if ( (i(ii) == i(jj)).and. &
(j(ii) == j(jj)).and. &
(k(ii) == k(jj)).and. &
(l(ii) == l(jj)) ) then
i(ii) = 0
exit
endif
enddo
enddo
! This has been tested with up to 1000 AOs, and all the reverse indices are
! correct ! We can remove the test
! do ii=1,8
! if (i(ii) /= 0) then
! call two_e_integrals_index(i(ii),j(ii),k(ii),l(ii),i2)
! if (i1 /= i2) then
! print *, i1, i2
! print *, i(ii), j(ii), k(ii), l(ii)
! stop 'two_e_integrals_index_reverse failed'
! endif
! endif
! enddo
end
subroutine ao_idx2_sq(i,j,ij)
implicit none
integer, intent(in) :: i,j
integer, intent(out) :: ij
if (i<j) then
ij=(j-1)*(j-1)+2*i-mod(j+1,2)
else if (i>j) then
ij=(i-1)*(i-1)+2*j-mod(i,2)
else
ij=i*i
endif
end
subroutine idx2_tri_int(i,j,ij)
implicit none
integer, intent(in) :: i,j
integer, intent(out) :: ij
integer :: p,q
p = max(i,j)
q = min(i,j)
ij = q+ishft(p*p-p,-1)
end
subroutine ao_idx2_tri_key(i,j,ij)
use map_module
implicit none
integer, intent(in) :: i,j
integer(key_kind), intent(out) :: ij
integer(key_kind) :: p,q
p = max(i,j)
q = min(i,j)
ij = q+ishft(p*p-p,-1)
end
subroutine two_e_integrals_index_2fold(i,j,k,l,i1)
use map_module
implicit none
integer, intent(in) :: i,j,k,l
integer(key_kind), intent(out) :: i1
integer :: ik,jl
call ao_idx2_sq(i,k,ik)
call ao_idx2_sq(j,l,jl)
call ao_idx2_tri_key(ik,jl,i1)
end
subroutine ao_idx2_sq_rev(i,k,ik)
BEGIN_DOC
! reverse square compound index
END_DOC
! p = ceiling(dsqrt(dble(ik)))
! q = ceiling(0.5d0*(dble(ik)-dble((p-1)*(p-1))))
! if (mod(ik,2)==0) then
! k=p
! i=q
! else
! i=p
! k=q
! endif
integer, intent(in) :: ik
integer, intent(out) :: i,k
integer :: pq(0:1),i1,i2
pq(0) = ceiling(dsqrt(dble(ik)))
pq(1) = ceiling(0.5d0*(dble(ik)-dble((pq(0)-1)*(pq(0)-1))))
i1=mod(ik,2)
i2=mod(ik+1,2)
k=pq(i1)
i=pq(i2)
end
subroutine ao_idx2_tri_rev_key(i,k,ik)
use map_module
BEGIN_DOC
!return i<=k
END_DOC
integer(key_kind), intent(in) :: ik
integer, intent(out) :: i,k
integer(key_kind) :: tmp_k
k = ceiling(0.5d0*(dsqrt(8.d0*dble(ik)+1.d0)-1.d0))
tmp_k = k
i = int(ik - ishft(tmp_k*tmp_k-tmp_k,-1))
end
subroutine idx2_tri_rev_int(i,k,ik)
BEGIN_DOC
!return i<=k
END_DOC
integer, intent(in) :: ik
integer, intent(out) :: i,k
k = ceiling(0.5d0*(dsqrt(8.d0*dble(ik)+1.d0)-1.d0))
i = int(ik - ishft(k*k-k,-1))
end
subroutine two_e_integrals_index_reverse_2fold(i,j,k,l,i1)
use map_module
implicit none
integer, intent(out) :: i(2),j(2),k(2),l(2)
integer(key_kind), intent(in) :: i1
integer(key_kind) :: i0
integer :: i2,i3
i = 0
call ao_idx2_tri_rev_key(i3,i2,i1)
call ao_idx2_sq_rev(j(1),l(1),i2)
call ao_idx2_sq_rev(i(1),k(1),i3)
!ijkl
i(2) = j(1) !jilk
j(2) = i(1)
k(2) = l(1)
l(2) = k(1)
! i(3) = k(1) !klij complex conjugate
! j(3) = l(1)
! k(3) = i(1)
! l(3) = j(1)
!
! i(4) = l(1) !lkji complex conjugate
! j(4) = k(1)
! k(4) = j(1)
! l(4) = i(1)
integer :: ii
if ( (i(1)==i(2)).and. &
(j(1)==j(2)).and. &
(k(1)==k(2)).and. &
(l(1)==l(2)) ) then
i(2) = 0
endif
! This has been tested with up to 1000 AOs, and all the reverse indices are
! correct ! We can remove the test
! do ii=1,2
! if (i(ii) /= 0) then
! call two_e_integrals_index_2fold(i(ii),j(ii),k(ii),l(ii),i0)
! if (i1 /= i0) then
! print *, i1, i0
! print *, i(ii), j(ii), k(ii), l(ii)
! stop 'two_e_integrals_index_reverse_2fold failed'
! endif
! endif
! enddo
end
BEGIN_PROVIDER [ integer, ao_integrals_cache_min ]
&BEGIN_PROVIDER [ integer, ao_integrals_cache_max ]
implicit none
BEGIN_DOC
! Min and max values of the AOs for which the integrals are in the cache
END_DOC
ao_integrals_cache_min = max(1,ao_num - 63)
ao_integrals_cache_max = ao_num
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_integrals_cache, (0:64*64*64*64) ]
implicit none
BEGIN_DOC
! Cache of AO integrals for fast access
END_DOC
PROVIDE ao_two_e_integrals_in_map
integer :: i,j,k,l,ii
integer(key_kind) :: idx, idx2
real(integral_kind) :: integral
real(integral_kind) :: tmp_re, tmp_im
integer(key_kind) :: idx_re,idx_im
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
do l=ao_integrals_cache_min,ao_integrals_cache_max
do k=ao_integrals_cache_min,ao_integrals_cache_max
do j=ao_integrals_cache_min,ao_integrals_cache_max
do i=ao_integrals_cache_min,ao_integrals_cache_max
!DIR$ FORCEINLINE
call two_e_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(ao_integrals_map,idx,integral)
ii = l-ao_integrals_cache_min
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
ao_integrals_cache(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
! ---
double precision function get_ao_two_e_integral(i, j, k, l, map) result(result)
use map_module
implicit none
BEGIN_DOC
! Gets one AO bi-electronic integral from the AO map in PHYSICIST NOTATION
!
! <1:k, 2:l |1:i, 2:j>
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx
type(map_type), intent(inout) :: map
integer :: ii
real(integral_kind) :: tmp
logical, external :: ao_two_e_integral_zero
PROVIDE ao_two_e_integrals_in_map ao_integrals_cache ao_integrals_cache_min
!DIR$ FORCEINLINE
if (ao_two_e_integral_zero(i,j,k,l)) then
tmp = 0.d0
else
ii = l-ao_integrals_cache_min
ii = ior(ii, k-ao_integrals_cache_min)
ii = ior(ii, j-ao_integrals_cache_min)
ii = ior(ii, i-ao_integrals_cache_min)
if (iand(ii, -64) /= 0) then
!DIR$ FORCEINLINE
call two_e_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(map,idx,tmp)
else
ii = l-ao_integrals_cache_min
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
tmp = ao_integrals_cache(ii)
endif
endif
result = tmp
end
BEGIN_PROVIDER [ complex*16, ao_integrals_cache_periodic, (0:64*64*64*64) ]
implicit none
BEGIN_DOC
! Cache of AO integrals for fast access
END_DOC
PROVIDE ao_two_e_integrals_in_map
integer :: i,j,k,l,ii
integer(key_kind) :: idx1, idx2
real(integral_kind) :: tmp_re, tmp_im
integer(key_kind) :: idx_re,idx_im
complex(integral_kind) :: integral
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx1,idx2,tmp_re,tmp_im,idx_re,idx_im,ii,integral)
do l=ao_integrals_cache_min,ao_integrals_cache_max
do k=ao_integrals_cache_min,ao_integrals_cache_max
do j=ao_integrals_cache_min,ao_integrals_cache_max
do i=ao_integrals_cache_min,ao_integrals_cache_max
!DIR$ FORCEINLINE
call two_e_integrals_index_2fold(i,j,k,l,idx1)
!DIR$ FORCEINLINE
call two_e_integrals_index_2fold(k,l,i,j,idx2)
idx_re = min(idx1,idx2)
idx_im = max(idx1,idx2)
!DIR$ FORCEINLINE
call map_get(ao_integrals_map,idx_re,tmp_re)
if (idx_re /= idx_im) then
call map_get(ao_integrals_map,idx_im,tmp_im)
if (idx1 < idx2) then
integral = dcmplx(tmp_re,tmp_im)
else
integral = dcmplx(tmp_re,-tmp_im)
endif
else
tmp_im = 0.d0
integral = dcmplx(tmp_re,tmp_im)
endif
ii = l-ao_integrals_cache_min
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
ao_integrals_cache_periodic(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
complex*16 function get_ao_two_e_integral_periodic(i,j,k,l,map) result(result)
use map_module
implicit none
BEGIN_DOC
! Gets one AO bi-electronic integral from the AO map
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx1,idx2
real(integral_kind) :: tmp_re, tmp_im
integer(key_kind) :: idx_re,idx_im
type(map_type), intent(inout) :: map
integer :: ii
complex(integral_kind) :: tmp
PROVIDE ao_two_e_integrals_in_map ao_integrals_cache_periodic ao_integrals_cache_min
!DIR$ FORCEINLINE
logical, external :: ao_two_e_integral_zero
if (ao_two_e_integral_zero(i,j,k,l)) then
tmp = (0.d0,0.d0)
else
ii = l-ao_integrals_cache_min
ii = ior(ii, k-ao_integrals_cache_min)
ii = ior(ii, j-ao_integrals_cache_min)
ii = ior(ii, i-ao_integrals_cache_min)
if (iand(ii, -64) /= 0) then
!DIR$ FORCEINLINE
call two_e_integrals_index_2fold(i,j,k,l,idx1)
!DIR$ FORCEINLINE
call two_e_integrals_index_2fold(k,l,i,j,idx2)
idx_re = min(idx1,idx2)
idx_im = max(idx1,idx2)
!DIR$ FORCEINLINE
call map_get(ao_integrals_map,idx_re,tmp_re)
if (idx_re /= idx_im) then
call map_get(ao_integrals_map,idx_im,tmp_im)
if (idx1 < idx2) then
tmp = dcmplx(tmp_re,tmp_im)
else
tmp = dcmplx(tmp_re,-tmp_im)
endif
else
tmp_im = 0.d0
tmp = dcmplx(tmp_re,tmp_im)
endif
else
ii = l-ao_integrals_cache_min
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
tmp = ao_integrals_cache_periodic(ii)
endif
result = tmp
endif
end
subroutine get_ao_two_e_integrals(j,k,l,sze,out_val)
use map_module
BEGIN_DOC
! Gets multiple AO bi-electronic integral from the AO map .
! All i are retrieved for j,k,l fixed.
! physicist convention : <ij|kl>
END_DOC
implicit none
integer, intent(in) :: j,k,l, sze
real(integral_kind), intent(out) :: out_val(sze)
integer :: i
integer(key_kind) :: hash
logical, external :: ao_one_e_integral_zero
PROVIDE ao_two_e_integrals_in_map ao_integrals_map
if (ao_one_e_integral_zero(j,l)) then
out_val(1:sze) = 0.d0
return
endif
double precision :: get_ao_two_e_integral
do i=1,sze
out_val(i) = get_ao_two_e_integral(i,j,k,l,ao_integrals_map)
enddo
end
subroutine get_ao_two_e_integrals_periodic(j,k,l,sze,out_val)
use map_module
BEGIN_DOC
! Gets multiple AO bi-electronic integral from the AO map .
! All i are retrieved for j,k,l fixed.
! physicist convention : <ij|kl>
END_DOC
implicit none
integer, intent(in) :: j,k,l, sze
complex(integral_kind), intent(out) :: out_val(sze)
integer :: i
integer(key_kind) :: hash
logical, external :: ao_one_e_integral_zero
PROVIDE ao_two_e_integrals_in_map ao_integrals_map
if (ao_one_e_integral_zero(j,l)) then
out_val = 0.d0
return
endif
double precision :: get_ao_two_e_integral
do i=1,sze
out_val(i) = get_ao_two_e_integral(i,j,k,l,ao_integrals_map)
enddo
end
subroutine get_ao_two_e_integrals_non_zero(j,k,l,sze,out_val,out_val_index,non_zero_int)
use map_module
implicit none
BEGIN_DOC
! Gets multiple AO bi-electronic integral from the AO map .
! All non-zero i are retrieved for j,k,l fixed.
END_DOC
integer, intent(in) :: j,k,l, sze
real(integral_kind), intent(out) :: out_val(sze)
integer, intent(out) :: out_val_index(sze),non_zero_int
integer :: i
integer(key_kind) :: hash
double precision :: tmp
logical, external :: ao_one_e_integral_zero
logical, external :: ao_two_e_integral_zero
PROVIDE ao_two_e_integrals_in_map
non_zero_int = 0
if (ao_one_e_integral_zero(j,l)) then
out_val = 0.d0
return
endif
non_zero_int = 0
do i=1,sze
integer, external :: ao_l4
double precision, external :: ao_two_e_integral
!DIR$ FORCEINLINE
if (ao_two_e_integral_zero(i,j,k,l)) then
cycle
endif
call two_e_integrals_index(i,j,k,l,hash)
call map_get(ao_integrals_map, hash,tmp)
if (dabs(tmp) < ao_integrals_threshold) cycle
non_zero_int = non_zero_int+1
out_val_index(non_zero_int) = i
out_val(non_zero_int) = tmp
enddo
end
subroutine get_ao_two_e_integrals_non_zero_jl(j,l,thresh,sze_max,sze,out_val,out_val_index,non_zero_int)
use map_module
implicit none
BEGIN_DOC
! Gets multiple AO bi-electronic integral from the AO map .
! All non-zero i are retrieved for j,k,l fixed.
END_DOC
double precision, intent(in) :: thresh
integer, intent(in) :: j,l, sze,sze_max
real(integral_kind), intent(out) :: out_val(sze_max)
integer, intent(out) :: out_val_index(2,sze_max),non_zero_int
integer :: i,k
integer(key_kind) :: hash
double precision :: tmp
logical, external :: ao_one_e_integral_zero
logical, external :: ao_two_e_integral_zero
PROVIDE ao_two_e_integrals_in_map
non_zero_int = 0
if (ao_one_e_integral_zero(j,l)) then
out_val = 0.d0
return
endif
non_zero_int = 0
do k = 1, sze
do i = 1, sze
integer, external :: ao_l4
double precision, external :: ao_two_e_integral
!DIR$ FORCEINLINE
if (ao_two_e_integral_zero(i,j,k,l)) then
cycle
endif
call two_e_integrals_index(i,j,k,l,hash)
call map_get(ao_integrals_map, hash,tmp)
if (dabs(tmp) < thresh ) cycle
non_zero_int = non_zero_int+1
out_val_index(1,non_zero_int) = i
out_val_index(2,non_zero_int) = k
out_val(non_zero_int) = tmp
enddo
enddo
end
subroutine get_ao_two_e_integrals_non_zero_jl_from_list(j,l,thresh,list,n_list,sze_max,out_val,out_val_index,non_zero_int)
use map_module
implicit none
BEGIN_DOC
! Gets multiple AO two-electron integrals from the AO map .
! All non-zero i are retrieved for j,k,l fixed.
END_DOC
double precision, intent(in) :: thresh
integer, intent(in) :: sze_max
integer, intent(in) :: j,l, n_list,list(2,sze_max)
real(integral_kind), intent(out) :: out_val(sze_max)
integer, intent(out) :: out_val_index(2,sze_max),non_zero_int
integer :: i,k
integer(key_kind) :: hash
double precision :: tmp
logical, external :: ao_one_e_integral_zero
logical, external :: ao_two_e_integral_zero
PROVIDE ao_two_e_integrals_in_map
non_zero_int = 0
if (ao_one_e_integral_zero(j,l)) then
out_val = 0.d0
return
endif
non_zero_int = 0
integer :: kk
do kk = 1, n_list
k = list(1,kk)
i = list(2,kk)
integer, external :: ao_l4
double precision, external :: ao_two_e_integral
!DIR$ FORCEINLINE
if (ao_two_e_integral_zero(i,j,k,l)) then
cycle
endif
call two_e_integrals_index(i,j,k,l,hash)
call map_get(ao_integrals_map, hash,tmp)
if (dabs(tmp) < thresh ) cycle
non_zero_int = non_zero_int+1
out_val_index(1,non_zero_int) = i
out_val_index(2,non_zero_int) = k
out_val(non_zero_int) = tmp
enddo
end
function get_ao_map_size()
implicit none
integer (map_size_kind) :: get_ao_map_size
BEGIN_DOC
! Returns the number of elements in the AO map
END_DOC
get_ao_map_size = ao_integrals_map % n_elements
end
subroutine clear_ao_map
implicit none
BEGIN_DOC
! Frees the memory of the AO map
END_DOC
call map_deinit(ao_integrals_map)
FREE ao_integrals_map
end
subroutine insert_into_ao_integrals_map(n_integrals,buffer_i, buffer_values)
use map_module
implicit none
BEGIN_DOC
! Create new entry into AO map
END_DOC
integer, intent(in) :: n_integrals
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
call map_append(ao_integrals_map, buffer_i, buffer_values, n_integrals)
end