qp2/plugins/local/tc_bi_ortho/tc_natorb.irp.f

235 lines
7.4 KiB
Fortran

! ---
BEGIN_PROVIDER [ double precision, natorb_tc_reigvec_mo, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, natorb_tc_leigvec_mo, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, natorb_tc_eigval, (mo_num)]
BEGIN_DOC
!
! natorb_tc_reigvec_mo : RIGHT eigenvectors of the ground state transition matrix (equivalent of natural orbitals)
! natorb_tc_leigvec_mo : LEFT eigenvectors of the ground state transition matrix (equivalent of natural orbitals)
! natorb_tc_eigval : eigenvalues of the ground state transition matrix (equivalent of the occupation numbers). WARNINING :: can be negative !!
!
END_DOC
implicit none
integer :: i, j, k
double precision :: thr_d, thr_nd, thr_deg, accu
double precision :: accu_d, accu_nd
double precision, allocatable :: dm_tmp(:,:), fock_diag(:)
allocate(dm_tmp(mo_num,mo_num), fock_diag(mo_num))
dm_tmp(1:mo_num,1:mo_num) = -tc_transition_matrix_mo(1:mo_num,1:mo_num,1,1)
print *, ' Transition density matrix '
do i = 1, mo_num
fock_diag(i) = fock_matrix_tc_mo_tot(i,i)
write(*, '(100(F16.10,X))') -dm_tmp(:,i)
enddo
print *, ' Transition density matrix AO'
do i = 1, ao_num
write(*, '(100(F16.10,X))') tc_transition_matrix_ao(:,i,1,1)
enddo
thr_d = 1.d-6
thr_nd = 1.d-6
thr_deg = 1.d-3
do i = 1, mo_num
do j = 1, mo_num
if(dabs(dm_tmp(j,i)).lt.thr_d)then
dm_tmp(j,i) = 0.d0
endif
enddo
enddo
! if(n_core_orb.ne.0)then
! call diag_mat_per_fock_degen_core( fock_diag, dm_tmp, list_core, n_core_orb, mo_num, thr_d, thr_nd, thr_deg &
! , natorb_tc_leigvec_mo, natorb_tc_reigvec_mo, natorb_tc_eigval)
! else
! call diag_mat_per_fock_degen( fock_diag, dm_tmp, mo_num, thr_d, thr_nd, thr_deg &
! , natorb_tc_leigvec_mo, natorb_tc_reigvec_mo, natorb_tc_eigval)
! endif
call non_hrmt_bieig(mo_num, dm_tmp, thresh_biorthog_diag, thresh_biorthog_nondiag &
, natorb_tc_leigvec_mo, natorb_tc_reigvec_mo &
, mo_num, natorb_tc_eigval )
accu = 0.d0
do i = 1, mo_num
print*,'natorb_tc_eigval(i) = ',-natorb_tc_eigval(i)
accu += -natorb_tc_eigval(i)
enddo
print *, ' accu = ', accu
dm_tmp = 0.d0
do i = 1, mo_num
accu = 0.d0
do k = 1, mo_num
accu += natorb_tc_reigvec_mo(k,i) * natorb_tc_leigvec_mo(k,i)
enddo
accu = 1.d0/dsqrt(dabs(accu))
natorb_tc_reigvec_mo(:,i) *= accu
natorb_tc_leigvec_mo(:,i) *= accu
do j = 1, mo_num
do k = 1, mo_num
dm_tmp(j,i) += natorb_tc_reigvec_mo(k,i) * natorb_tc_leigvec_mo(k,j)
enddo
enddo
enddo
accu_d = 0.d0
accu_nd = 0.d0
do i = 1, mo_num
accu_d += dm_tmp(i,i)
!write(*,'(100(F16.10,X))')dm_tmp(:,i)
do j = 1, mo_num
if(i==j)cycle
accu_nd += dabs(dm_tmp(j,i))
enddo
enddo
print *, ' Trace of the overlap between TC natural orbitals ', accu_d
print *, ' L1 norm of extra diagonal elements of overlap matrix ', accu_nd
deallocate(dm_tmp, fock_diag)
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, fock_diag_sorted_r_natorb, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, fock_diag_sorted_l_natorb, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, fock_diag_sorted_v_natorb, (mo_num)]
implicit none
integer :: i,j,k
integer, allocatable :: iorder(:)
double precision, allocatable :: fock_diag(:)
print *, ' Diagonal elements of the Fock matrix before '
do i = 1, mo_num
write(*,*) i, Fock_matrix_tc_mo_tot(i,i)
enddo
allocate(fock_diag(mo_num))
fock_diag = 0.d0
do i = 1, mo_num
fock_diag(i) = 0.d0
do j = 1, mo_num
do k = 1, mo_num
fock_diag(i) += natorb_tc_leigvec_mo(k,i) * Fock_matrix_tc_mo_tot(k,j) * natorb_tc_reigvec_mo(j,i)
enddo
enddo
enddo
allocate(iorder(mo_num))
do i = 1, mo_num
iorder(i) = i
enddo
call dsort(fock_diag, iorder, mo_num)
print *, ' Diagonal elements of the Fock matrix after '
do i = 1, mo_num
write(*,*) i, fock_diag(i)
enddo
deallocate(fock_diag)
do i = 1, mo_num
fock_diag_sorted_v_natorb(i) = natorb_tc_eigval(iorder(i))
do j = 1, mo_num
fock_diag_sorted_r_natorb(j,i) = natorb_tc_reigvec_mo(j,iorder(i))
fock_diag_sorted_l_natorb(j,i) = natorb_tc_leigvec_mo(j,iorder(i))
enddo
enddo
deallocate(iorder)
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, natorb_tc_reigvec_ao, (ao_num, mo_num)]
&BEGIN_PROVIDER [ double precision, natorb_tc_leigvec_ao, (ao_num, mo_num)]
&BEGIN_PROVIDER [ double precision, overlap_natorb_tc_eigvec_ao, (mo_num, mo_num) ]
BEGIN_DOC
! EIGENVECTORS OF FOCK MATRIX ON THE AO BASIS and their OVERLAP
!
! THE OVERLAP SHOULD BE THE SAME AS overlap_natorb_tc_eigvec_mo
END_DOC
implicit none
integer :: i, j, k, q, p
double precision :: accu, accu_d
double precision, allocatable :: tmp(:,:)
! ! MO_R x R
call dgemm( 'N', 'N', ao_num, mo_num, mo_num, 1.d0 &
, mo_r_coef, size(mo_r_coef, 1) &
, fock_diag_sorted_r_natorb, size(fock_diag_sorted_r_natorb, 1) &
, 0.d0, natorb_tc_reigvec_ao, size(natorb_tc_reigvec_ao, 1) )
!
! MO_L x L
call dgemm( 'N', 'N', ao_num, mo_num, mo_num, 1.d0 &
, mo_l_coef, size(mo_l_coef, 1) &
, fock_diag_sorted_l_natorb, size(fock_diag_sorted_l_natorb, 1) &
, 0.d0, natorb_tc_leigvec_ao, size(natorb_tc_leigvec_ao, 1) )
allocate( tmp(mo_num,ao_num) )
! tmp <-- L.T x S_ao
call dgemm( "T", "N", mo_num, ao_num, ao_num, 1.d0 &
, natorb_tc_leigvec_ao, size(natorb_tc_leigvec_ao, 1), ao_overlap, size(ao_overlap, 1) &
, 0.d0, tmp, size(tmp, 1) )
! S <-- tmp x R
call dgemm( "N", "N", mo_num, mo_num, ao_num, 1.d0 &
, tmp, size(tmp, 1), natorb_tc_reigvec_ao, size(natorb_tc_reigvec_ao, 1) &
, 0.d0, overlap_natorb_tc_eigvec_ao, size(overlap_natorb_tc_eigvec_ao, 1) )
deallocate( tmp )
! ---
double precision :: norm
do i = 1, mo_num
norm = 1.d0/dsqrt(dabs(overlap_natorb_tc_eigvec_ao(i,i)))
do j = 1, mo_num
natorb_tc_reigvec_ao(j,i) *= norm
natorb_tc_leigvec_ao(j,i) *= norm
enddo
enddo
allocate( tmp(mo_num,ao_num) )
! tmp <-- L.T x S_ao
call dgemm( "T", "N", mo_num, ao_num, ao_num, 1.d0 &
, natorb_tc_leigvec_ao, size(natorb_tc_leigvec_ao, 1), ao_overlap, size(ao_overlap, 1) &
, 0.d0, tmp, size(tmp, 1) )
! S <-- tmp x R
call dgemm( "N", "N", mo_num, mo_num, ao_num, 1.d0 &
, tmp, size(tmp, 1), natorb_tc_reigvec_ao, size(natorb_tc_reigvec_ao, 1) &
, 0.d0, overlap_natorb_tc_eigvec_ao, size(overlap_natorb_tc_eigvec_ao, 1) )
deallocate( tmp )
accu_d = 0.d0
accu = 0.d0
do i = 1, mo_num
accu_d += overlap_natorb_tc_eigvec_ao(i,i)
do j = 1, mo_num
if(i==j)cycle
accu += dabs(overlap_natorb_tc_eigvec_ao(j,i))
enddo
enddo
print*,'Trace of the overlap_natorb_tc_eigvec_ao = ',accu_d
print*,'mo_num = ',mo_num
print*,'L1 norm of extra diagonal elements of overlap matrix ',accu
accu = accu / dble(mo_num**2)
END_PROVIDER