9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-04 12:33:38 +01:00
qp2/src/ao_one_e_ints/pot_ao_pseudo_ints.irp.f
2021-11-17 00:47:36 +01:00

299 lines
9.2 KiB
Fortran

BEGIN_PROVIDER [ double precision, ao_pseudo_integrals, (ao_num,ao_num)]
implicit none
BEGIN_DOC
! Pseudo-potential integrals in the |AO| basis set.
END_DOC
if (read_ao_integrals_pseudo) then
call ezfio_get_ao_one_e_ints_ao_integrals_pseudo(ao_pseudo_integrals)
print *, 'AO pseudopotential integrals read from disk'
else
ao_pseudo_integrals = 0.d0
if (do_pseudo) then
if (pseudo_klocmax > 0) then
ao_pseudo_integrals += ao_pseudo_integrals_local
endif
if (pseudo_kmax > 0) then
ao_pseudo_integrals += ao_pseudo_integrals_non_local
endif
endif
endif
if (write_ao_integrals_pseudo) then
call ezfio_set_ao_one_e_ints_ao_integrals_pseudo(ao_pseudo_integrals)
print *, 'AO pseudopotential integrals written to disk'
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_pseudo_integrals_local, (ao_num,ao_num)]
use omp_lib
implicit none
BEGIN_DOC
! Local pseudo-potential
END_DOC
include 'utils/constants.include.F'
double precision :: alpha, beta, gama, delta
integer :: num_A,num_B
double precision :: A_center(3),B_center(3),C_center(3)
integer :: power_A(3),power_B(3)
integer :: i,j,k,l,m
double precision :: Vloc, Vpseudo
double precision :: wall_1, wall_2, wall_0
integer :: thread_num
double precision :: c
double precision :: Z
PROVIDE ao_coef_normalized_ordered_transp
PROVIDE pseudo_v_k_transp pseudo_n_k_transp pseudo_klocmax pseudo_dz_k_transp
ao_pseudo_integrals_local = 0.d0
print*, 'Providing the nuclear electron pseudo integrals (local)'
! Dummy iteration for OpenMP
j=1
i=1
l=1
m=1
num_A = ao_nucl(j)
power_A(1:3)= ao_power(j,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
num_B = ao_nucl(i)
power_B(1:3)= ao_power(i,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
alpha = ao_expo_ordered_transp(l,j)
beta = ao_expo_ordered_transp(m,i)
c = 0.d0
do k = 1, nucl_num
Z = nucl_charge(k)
C_center(1:3) = nucl_coord(k,1:3)
c = c + Vloc(pseudo_klocmax, &
pseudo_v_k_transp (1,k), &
pseudo_n_k_transp (1,k), &
pseudo_dz_k_transp(1,k), &
A_center,power_A,alpha,B_center,power_B,beta,C_center)
enddo
ao_pseudo_integrals_local = 0.d0
call wall_time(wall_1)
thread_num = 0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,l,m,alpha,beta,A_center,B_center,C_center,power_A,power_B,&
!$OMP num_A,num_B,Z,c, &
!$OMP wall_0,wall_2,thread_num) &
!$OMP SHARED (ao_num,ao_prim_num,ao_expo_ordered_transp,ao_power,ao_nucl,nucl_coord,ao_coef_normalized_ordered_transp,&
!$OMP ao_pseudo_integrals_local,nucl_num,nucl_charge, &
!$OMP pseudo_klocmax,pseudo_lmax,pseudo_kmax,pseudo_v_k_transp,pseudo_n_k_transp, pseudo_dz_k_transp,&
!$OMP wall_1)
!$ thread_num = omp_get_thread_num()
wall_0 = wall_1
!$OMP DO
do j = 1, ao_num
num_A = ao_nucl(j)
power_A(1:3)= ao_power(j,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
do i = 1, ao_num
num_B = ao_nucl(i)
power_B(1:3)= ao_power(i,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
do l=1,ao_prim_num(j)
alpha = ao_expo_ordered_transp(l,j)
do m=1,ao_prim_num(i)
beta = ao_expo_ordered_transp(m,i)
c = 0.d0
if (dabs(ao_coef_normalized_ordered_transp(l,j)*ao_coef_normalized_ordered_transp(m,i))&
< thresh) then
cycle
endif
do k = 1, nucl_num
Z = nucl_charge(k)
C_center(1:3) = nucl_coord(k,1:3)
c = c + Vloc(pseudo_klocmax, &
pseudo_v_k_transp (1,k), &
pseudo_n_k_transp (1,k), &
pseudo_dz_k_transp(1,k), &
A_center,power_A,alpha,B_center,power_B,beta,C_center)
enddo
ao_pseudo_integrals_local(i,j) = ao_pseudo_integrals_local(i,j) +&
ao_coef_normalized_ordered_transp(l,j)*ao_coef_normalized_ordered_transp(m,i)*c
enddo
enddo
enddo
call wall_time(wall_2)
if (thread_num == 0) then
if (wall_2 - wall_0 > 1.d0) then
wall_0 = wall_2
print*, 100.*float(j)/float(ao_num), '% in ', &
wall_2-wall_1, 's'
endif
endif
enddo
!$OMP END DO
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_pseudo_integrals_non_local, (ao_num,ao_num)]
use omp_lib
implicit none
BEGIN_DOC
! Non-local pseudo-potential
END_DOC
include 'utils/constants.include.F'
double precision :: alpha, beta, gama, delta
integer :: num_A,num_B
double precision :: A_center(3),B_center(3),C_center(3)
integer :: power_A(3),power_B(3)
integer :: i,j,k,l,m
double precision :: Vloc, Vpseudo
double precision :: wall_1, wall_2, wall_0
integer :: thread_num
double precision :: c
double precision :: Z
PROVIDE ao_coef_normalized_ordered_transp
PROVIDE pseudo_lmax pseudo_kmax pseudo_v_kl_transp pseudo_n_kl_transp pseudo_dz_kl_transp
ao_pseudo_integrals_non_local = 0.d0
print*, 'Providing the nuclear electron pseudo integrals (non-local)'
call wall_time(wall_1)
thread_num = 0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,l,m,alpha,beta,A_center,B_center,C_center,power_A,power_B,&
!$OMP num_A,num_B,Z,c, &
!$OMP wall_0,wall_2,thread_num) &
!$OMP SHARED (ao_num,ao_prim_num,ao_expo_ordered_transp,ao_power,ao_nucl,nucl_coord,ao_coef_normalized_ordered_transp,&
!$OMP ao_pseudo_integrals_non_local,nucl_num,nucl_charge,&
!$OMP pseudo_klocmax,pseudo_lmax,pseudo_kmax,pseudo_n_kl_transp, pseudo_v_kl_transp, pseudo_dz_kl_transp,&
!$OMP wall_1)
!$ thread_num = omp_get_thread_num()
wall_0 = wall_1
!$OMP DO SCHEDULE (guided)
!
do j = 1, ao_num
num_A = ao_nucl(j)
power_A(1:3)= ao_power(j,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
do i = 1, ao_num
num_B = ao_nucl(i)
power_B(1:3)= ao_power(i,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
do l=1,ao_prim_num(j)
alpha = ao_expo_ordered_transp(l,j)
do m=1,ao_prim_num(i)
beta = ao_expo_ordered_transp(m,i)
c = 0.d0
if (dabs(ao_coef_normalized_ordered_transp(l,j)*ao_coef_normalized_ordered_transp(m,i))&
< thresh) then
cycle
endif
do k = 1, nucl_num
Z = nucl_charge(k)
C_center(1:3) = nucl_coord(k,1:3)
c = c + Vpseudo(pseudo_lmax,pseudo_kmax, &
pseudo_v_kl_transp(1,0,k), &
pseudo_n_kl_transp(1,0,k), &
pseudo_dz_kl_transp(1,0,k), &
A_center,power_A,alpha,B_center,power_B,beta,C_center)
enddo
ao_pseudo_integrals_non_local(i,j) = ao_pseudo_integrals_non_local(i,j) +&
ao_coef_normalized_ordered_transp(l,j)*ao_coef_normalized_ordered_transp(m,i)*c
enddo
enddo
enddo
call wall_time(wall_2)
if (thread_num == 0) then
if (wall_2 - wall_0 > 1.d0) then
wall_0 = wall_2
print*, 100.*float(j)/float(ao_num), '% in ', &
wall_2-wall_1, 's'
endif
endif
enddo
!$OMP END DO
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ double precision, pseudo_v_k_transp, (pseudo_klocmax,nucl_num) ]
&BEGIN_PROVIDER [ integer , pseudo_n_k_transp, (pseudo_klocmax,nucl_num) ]
&BEGIN_PROVIDER [ double precision, pseudo_dz_k_transp, (pseudo_klocmax,nucl_num)]
implicit none
BEGIN_DOC
! Transposed arrays for pseudopotentials
END_DOC
integer :: i,j
do j=1,nucl_num
do i=1,pseudo_klocmax
pseudo_v_k_transp (i,j) = pseudo_v_k (j,i)
pseudo_n_k_transp (i,j) = pseudo_n_k (j,i)
pseudo_dz_k_transp(i,j) = pseudo_dz_k(j,i)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, pseudo_v_kl_transp, (pseudo_kmax,0:pseudo_lmax,nucl_num) ]
&BEGIN_PROVIDER [ integer , pseudo_n_kl_transp, (pseudo_kmax,0:pseudo_lmax,nucl_num) ]
&BEGIN_PROVIDER [ double precision, pseudo_dz_kl_transp, (pseudo_kmax,0:pseudo_lmax,nucl_num)]
implicit none
BEGIN_DOC
! Transposed arrays for pseudopotentials
END_DOC
integer :: i,j,l
do j=1,nucl_num
do l=0,pseudo_lmax
do i=1,pseudo_kmax
pseudo_v_kl_transp (i,l,j) = pseudo_v_kl (j,i,l)
pseudo_n_kl_transp (i,l,j) = pseudo_n_kl (j,i,l)
pseudo_dz_kl_transp(i,l,j) = pseudo_dz_kl(j,i,l)
enddo
enddo
enddo
END_PROVIDER