9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-02 19:53:36 +01:00
qp2/src/ao_one_e_ints/pot_ao_erf_ints.irp.f

377 lines
11 KiB
Fortran

subroutine give_all_erf_kl_ao(integrals_ao,mu_in,C_center)
implicit none
BEGIN_DOC
! Subroutine that returns all integrals over $r$ of type
! $\frac{ \erf(\mu * | r - R_C | ) }{ | r - R_C | }$
END_DOC
double precision, intent(in) :: mu_in,C_center(3)
double precision, intent(out) :: integrals_ao(ao_num,ao_num)
double precision :: NAI_pol_mult_erf_ao
integer :: i,j,l,k,m
do k = 1, ao_num
do m = 1, ao_num
integrals_ao(m,k) = NAI_pol_mult_erf_ao(m,k,mu_in,C_center)
enddo
enddo
end
double precision function NAI_pol_mult_erf_ao(i_ao,j_ao,mu_in,C_center)
implicit none
BEGIN_DOC
! Computes the following integral :
! $\int_{-\infty}^{infty} dr \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
END_DOC
integer, intent(in) :: i_ao,j_ao
double precision, intent(in) :: mu_in, C_center(3)
integer :: i,j,num_A,num_B, power_A(3), power_B(3), n_pt_in
double precision :: A_center(3), B_center(3),integral, alpha,beta
double precision :: NAI_pol_mult_erf
num_A = ao_nucl(i_ao)
power_A(1:3)= ao_power(i_ao,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
num_B = ao_nucl(j_ao)
power_B(1:3)= ao_power(j_ao,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
n_pt_in = n_pt_max_integrals
NAI_pol_mult_erf_ao = 0.d0
do i = 1, ao_prim_num(i_ao)
alpha = ao_expo_ordered_transp(i,i_ao)
do j = 1, ao_prim_num(j_ao)
beta = ao_expo_ordered_transp(j,j_ao)
integral = NAI_pol_mult_erf(A_center,B_center,power_A,power_B,alpha,beta,C_center,n_pt_in,mu_in)
NAI_pol_mult_erf_ao += integral * ao_coef_normalized_ordered_transp(j,j_ao)*ao_coef_normalized_ordered_transp(i,i_ao)
enddo
enddo
end
double precision function NAI_pol_mult_erf(A_center,B_center,power_A,power_B,alpha,beta,C_center,n_pt_in,mu_in)
BEGIN_DOC
! Computes the following integral :
!
! .. math::
!
! \int dr (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
! \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
implicit none
integer, intent(in) :: n_pt_in
double precision,intent(in) :: C_center(3),A_center(3),B_center(3),alpha,beta,mu_in
integer, intent(in) :: power_A(3),power_B(3)
integer :: i,j,k,l,n_pt
double precision :: P_center(3)
double precision :: d(0:n_pt_in),pouet,coeff,dist,const,pouet_2,factor
double precision :: I_n_special_exact,integrate_bourrin,I_n_bibi
double precision :: V_e_n,const_factor,dist_integral,tmp
double precision :: accu,rint,p_inv,p,rho,p_inv_2
integer :: n_pt_out,lmax
include 'utils/constants.include.F'
p = alpha + beta
p_inv = 1.d0/p
p_inv_2 = 0.5d0 * p_inv
rho = alpha * beta * p_inv
dist = 0.d0
dist_integral = 0.d0
do i = 1, 3
P_center(i) = (alpha * A_center(i) + beta * B_center(i)) * p_inv
dist += (A_center(i) - B_center(i))*(A_center(i) - B_center(i))
dist_integral += (P_center(i) - C_center(i))*(P_center(i) - C_center(i))
enddo
const_factor = dist*rho
if(const_factor > 80.d0)then
NAI_pol_mult_erf = 0.d0
return
endif
double precision :: p_new
p_new = mu_in/dsqrt(p+ mu_in * mu_in)
factor = dexp(-const_factor)
coeff = dtwo_pi * factor * p_inv * p_new
lmax = 20
! print*, "b"
do i = 0, n_pt_in
d(i) = 0.d0
enddo
n_pt = 2 * ( (power_A(1) + power_B(1)) +(power_A(2) + power_B(2)) +(power_A(3) + power_B(3)) )
const = p * dist_integral * p_new * p_new
if (n_pt == 0) then
pouet = rint(0,const)
NAI_pol_mult_erf = coeff * pouet
return
endif
! call give_polynomial_mult_center_one_e_erf(A_center,B_center,alpha,beta,power_A,power_B,C_center,n_pt_in,d,n_pt_out,mu_in)
p_new = p_new * p_new
call give_polynomial_mult_center_one_e_erf_opt(A_center,B_center,alpha,beta,power_A,power_B,C_center,n_pt_in,d,n_pt_out,mu_in,p,p_inv,p_inv_2,p_new,P_center)
if(n_pt_out<0)then
NAI_pol_mult_erf = 0.d0
return
endif
accu = 0.d0
! sum of integrals of type : int {t,[0,1]} exp-(rho.(P-Q)^2 * t^2) * t^i
do i =0 ,n_pt_out,2
accu += d(i) * rint(i/2,const)
enddo
NAI_pol_mult_erf = accu * coeff
end
subroutine give_polynomial_mult_center_one_e_erf_opt(A_center,B_center,alpha,beta,&
power_A,power_B,C_center,n_pt_in,d,n_pt_out,mu_in,p,p_inv,p_inv_2,p_new,P_center)
BEGIN_DOC
! Returns the explicit polynomial in terms of the $t$ variable of the
! following polynomial:
!
! $I_{x1}(a_x, d_x,p,q) \times I_{x1}(a_y, d_y,p,q) \times I_{x1}(a_z, d_z,p,q)$.
END_DOC
implicit none
integer, intent(in) :: n_pt_in
integer,intent(out) :: n_pt_out
double precision, intent(in) :: A_center(3), B_center(3),C_center(3),p,p_inv,p_inv_2,p_new,P_center(3)
double precision, intent(in) :: alpha,beta,mu_in
integer, intent(in) :: power_A(3), power_B(3)
integer :: a_x,b_x,a_y,b_y,a_z,b_z
double precision :: d(0:n_pt_in)
double precision :: d1(0:n_pt_in)
double precision :: d2(0:n_pt_in)
double precision :: d3(0:n_pt_in)
double precision :: accu
accu = 0.d0
ASSERT (n_pt_in > 1)
double precision :: R1x(0:2), B01(0:2), R1xp(0:2),R2x(0:2)
R1x(0) = (P_center(1) - A_center(1))
R1x(1) = 0.d0
R1x(2) = -(P_center(1) - C_center(1))* p_new
! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
R1xp(0) = (P_center(1) - B_center(1))
R1xp(1) = 0.d0
R1xp(2) =-(P_center(1) - C_center(1))* p_new
!R1xp = (P_x - B_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
R2x(0) = p_inv_2
R2x(1) = 0.d0
R2x(2) = -p_inv_2* p_new
!R2x = 0.5 / p - 0.5/p ( t * mu/sqrt(p+mu^2) )^2
do i = 0,n_pt_in
d(i) = 0.d0
enddo
do i = 0,n_pt_in
d1(i) = 0.d0
enddo
do i = 0,n_pt_in
d2(i) = 0.d0
enddo
do i = 0,n_pt_in
d3(i) = 0.d0
enddo
integer :: n_pt1,n_pt2,n_pt3,dim,i
n_pt1 = n_pt_in
n_pt2 = n_pt_in
n_pt3 = n_pt_in
a_x = power_A(1)
b_x = power_B(1)
call I_x1_pol_mult_one_e(a_x,b_x,R1x,R1xp,R2x,d1,n_pt1,n_pt_in)
if(n_pt1<0)then
n_pt_out = -1
do i = 0,n_pt_in
d(i) = 0.d0
enddo
return
endif
R1x(0) = (P_center(2) - A_center(2))
R1x(1) = 0.d0
R1x(2) = -(P_center(2) - C_center(2))* p_new
! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
R1xp(0) = (P_center(2) - B_center(2))
R1xp(1) = 0.d0
R1xp(2) =-(P_center(2) - C_center(2))* p_new
!R1xp = (P_x - B_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
a_y = power_A(2)
b_y = power_B(2)
call I_x1_pol_mult_one_e(a_y,b_y,R1x,R1xp,R2x,d2,n_pt2,n_pt_in)
if(n_pt2<0)then
n_pt_out = -1
do i = 0,n_pt_in
d(i) = 0.d0
enddo
return
endif
R1x(0) = (P_center(3) - A_center(3))
R1x(1) = 0.d0
R1x(2) = -(P_center(3) - C_center(3))* p_new
! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
R1xp(0) = (P_center(3) - B_center(3))
R1xp(1) = 0.d0
R1xp(2) =-(P_center(3) - C_center(3))* p_new
!R2x = 0.5 / p - 0.5/p ( t * mu/sqrt(p+mu^2) )^2
a_z = power_A(3)
b_z = power_B(3)
call I_x1_pol_mult_one_e(a_z,b_z,R1x,R1xp,R2x,d3,n_pt3,n_pt_in)
if(n_pt3<0)then
n_pt_out = -1
do i = 0,n_pt_in
d(i) = 0.d0
enddo
return
endif
integer :: n_pt_tmp
n_pt_tmp = 0
call multiply_poly(d1,n_pt1,d2,n_pt2,d,n_pt_tmp)
do i = 0,n_pt_tmp
d1(i) = 0.d0
enddo
n_pt_out = 0
call multiply_poly(d ,n_pt_tmp ,d3,n_pt3,d1,n_pt_out)
do i = 0, n_pt_out
d(i) = d1(i)
enddo
end
subroutine give_polynomial_mult_center_one_e_erf(A_center,B_center,alpha,beta,&
power_A,power_B,C_center,n_pt_in,d,n_pt_out,mu_in)
BEGIN_DOC
! Returns the explicit polynomial in terms of the $t$ variable of the
! following polynomial:
!
! $I_{x1}(a_x, d_x,p,q) \times I_{x1}(a_y, d_y,p,q) \times I_{x1}(a_z, d_z,p,q)$.
END_DOC
implicit none
integer, intent(in) :: n_pt_in
integer,intent(out) :: n_pt_out
double precision, intent(in) :: A_center(3), B_center(3),C_center(3)
double precision, intent(in) :: alpha,beta,mu_in
integer, intent(in) :: power_A(3), power_B(3)
integer :: a_x,b_x,a_y,b_y,a_z,b_z
double precision :: d(0:n_pt_in)
double precision :: d1(0:n_pt_in)
double precision :: d2(0:n_pt_in)
double precision :: d3(0:n_pt_in)
double precision :: accu, pq_inv, p10_1, p10_2, p01_1, p01_2
double precision :: p,P_center(3),rho,p_inv,p_inv_2
accu = 0.d0
ASSERT (n_pt_in > 1)
p = alpha+beta
p_inv = 1.d0/p
p_inv_2 = 0.5d0/p
do i =1, 3
P_center(i) = (alpha * A_center(i) + beta * B_center(i)) * p_inv
enddo
double precision :: R1x(0:2), B01(0:2), R1xp(0:2),R2x(0:2)
R1x(0) = (P_center(1) - A_center(1))
R1x(1) = 0.d0
R1x(2) = -(P_center(1) - C_center(1))* mu_in**2 / (p+mu_in*mu_in)
! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
R1xp(0) = (P_center(1) - B_center(1))
R1xp(1) = 0.d0
R1xp(2) =-(P_center(1) - C_center(1))* mu_in**2 / (p+mu_in*mu_in)
!R1xp = (P_x - B_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
R2x(0) = p_inv_2
R2x(1) = 0.d0
R2x(2) = -p_inv_2* mu_in**2 / (p+mu_in*mu_in)
!R2x = 0.5 / p - 0.5/p ( t * mu/sqrt(p+mu^2) )^2
do i = 0,n_pt_in
d(i) = 0.d0
enddo
do i = 0,n_pt_in
d1(i) = 0.d0
enddo
do i = 0,n_pt_in
d2(i) = 0.d0
enddo
do i = 0,n_pt_in
d3(i) = 0.d0
enddo
integer :: n_pt1,n_pt2,n_pt3,dim,i
n_pt1 = n_pt_in
n_pt2 = n_pt_in
n_pt3 = n_pt_in
a_x = power_A(1)
b_x = power_B(1)
call I_x1_pol_mult_one_e(a_x,b_x,R1x,R1xp,R2x,d1,n_pt1,n_pt_in)
! print*,'passed the first I_x1'
if(n_pt1<0)then
n_pt_out = -1
do i = 0,n_pt_in
d(i) = 0.d0
enddo
return
endif
R1x(0) = (P_center(2) - A_center(2))
R1x(1) = 0.d0
R1x(2) = -(P_center(2) - C_center(2))* mu_in**2 / (p+mu_in*mu_in)
! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
R1xp(0) = (P_center(2) - B_center(2))
R1xp(1) = 0.d0
R1xp(2) =-(P_center(2) - C_center(2))* mu_in**2 / (p+mu_in*mu_in)
!R1xp = (P_x - B_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
a_y = power_A(2)
b_y = power_B(2)
call I_x1_pol_mult_one_e(a_y,b_y,R1x,R1xp,R2x,d2,n_pt2,n_pt_in)
! print*,'passed the second I_x1'
if(n_pt2<0)then
n_pt_out = -1
do i = 0,n_pt_in
d(i) = 0.d0
enddo
return
endif
R1x(0) = (P_center(3) - A_center(3))
R1x(1) = 0.d0
R1x(2) = -(P_center(3) - C_center(3))* mu_in**2 / (p+mu_in*mu_in)
! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
R1xp(0) = (P_center(3) - B_center(3))
R1xp(1) = 0.d0
R1xp(2) =-(P_center(3) - C_center(3))* mu_in**2 / (p+mu_in*mu_in)
!R2x = 0.5 / p - 0.5/p ( t * mu/sqrt(p+mu^2) )^2
a_z = power_A(3)
b_z = power_B(3)
! print*,'a_z = ',a_z
! print*,'b_z = ',b_z
call I_x1_pol_mult_one_e(a_z,b_z,R1x,R1xp,R2x,d3,n_pt3,n_pt_in)
! print*,'passed the third I_x1'
if(n_pt3<0)then
n_pt_out = -1
do i = 0,n_pt_in
d(i) = 0.d0
enddo
return
endif
integer :: n_pt_tmp
n_pt_tmp = 0
call multiply_poly(d1,n_pt1,d2,n_pt2,d,n_pt_tmp)
do i = 0,n_pt_tmp
d1(i) = 0.d0
enddo
n_pt_out = 0
call multiply_poly(d ,n_pt_tmp ,d3,n_pt3,d1,n_pt_out)
do i = 0, n_pt_out
d(i) = d1(i)
enddo
end