9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-07 20:23:30 +01:00
qp2/src/casscf_cipsi/neworbs.irp.f
2023-06-18 21:42:40 +02:00

254 lines
6.7 KiB
Fortran

BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)]
&BEGIN_PROVIDER [integer, n_guess_sx_mat ]
implicit none
BEGIN_DOC
! Single-excitation matrix
END_DOC
integer :: i,j
do i=1,nMonoEx+1
do j=1,nMonoEx+1
SXmatrix(i,j)=0.D0
end do
end do
do i=1,nMonoEx
SXmatrix(1,i+1)=gradvec2(i)
SXmatrix(1+i,1)=gradvec2(i)
end do
if(diag_hess_cas)then
do i = 1, nMonoEx
SXmatrix(i+1,i+1) = hessdiag(i)
enddo
else
do i=1,nMonoEx
do j=1,nMonoEx
SXmatrix(i+1,j+1)=hessmat(i,j)
SXmatrix(j+1,i+1)=hessmat(i,j)
end do
end do
endif
do i = 1, nMonoEx
SXmatrix(i+1,i+1) += level_shift_casscf
enddo
n_guess_sx_mat = 1
do i = 1, nMonoEx
if(SXmatrix(i+1,i+1).lt.0.d0 )then
n_guess_sx_mat += 1
endif
enddo
if (bavard) then
do i=2,nMonoEx
write(6,*) ' diagonal of the Hessian : ',i,hessmat(i,i)
end do
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)]
&BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)]
implicit none
BEGIN_DOC
! Eigenvectors/eigenvalues of the single-excitation matrix
END_DOC
if(nMonoEx+1.gt.n_det_max_full)then
if(bavard)then
print*,'Using the Davidson algorithm to diagonalize the SXmatrix'
endif
double precision, allocatable :: u_in(:,:),energies(:)
allocate(u_in(nMonoEx+1,n_states_diag),energies(n_guess_sx_mat))
call davidson_diag_sx_mat(n_guess_sx_mat, u_in, energies)
integer :: i,j
SXeigenvec = 0.d0
SXeigenval = 0.d0
do i = 1, n_guess_sx_mat
SXeigenval(i) = energies(i)
do j = 1, nMonoEx+1
SXeigenvec(j,i) = u_in(j,i)
enddo
enddo
else
if(bavard)then
print*,'Diagonalize the SXmatrix with Jacobi'
endif
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
endif
if (bavard) then
write(6,*) ' SXdiag : lowest eigenvalues '
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
if(n_guess_sx_mat.gt.0)then
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
endif
write(6,*)
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
endif
END_PROVIDER
BEGIN_PROVIDER [real*8, energy_improvement]
implicit none
if(state_following_casscf)then
energy_improvement = SXeigenval(best_vector_ovrlp_casscf)
else
energy_improvement = SXeigenval(1)
endif
END_PROVIDER
BEGIN_PROVIDER [ integer, best_vector_ovrlp_casscf ]
&BEGIN_PROVIDER [ double precision, best_overlap_casscf ]
implicit none
integer :: i
double precision :: c0
best_overlap_casscf = 0.D0
best_vector_ovrlp_casscf = -1000
do i=1,nMonoEx+1
if (SXeigenval(i).lt.0.D0) then
if (dabs(SXeigenvec(1,i)).gt.best_overlap_casscf) then
best_overlap_casscf=dabs(SXeigenvec(1,i))
best_vector_ovrlp_casscf = i
end if
end if
end do
if(best_vector_ovrlp_casscf.lt.0)then
best_vector_ovrlp_casscf = minloc(SXeigenval,nMonoEx+1)
endif
c0=SXeigenvec(1,best_vector_ovrlp_casscf)
if (bavard) then
write(6,*) ' SXdiag : eigenvalue for best overlap with '
write(6,*) ' previous orbitals = ',SXeigenval(best_vector_ovrlp_casscf)
write(6,*) ' weight of the 1st element ',c0
endif
END_PROVIDER
BEGIN_PROVIDER [double precision, SXvector, (nMonoEx+1)]
implicit none
BEGIN_DOC
! Best eigenvector of the single-excitation matrix
END_DOC
integer :: i
double precision :: c0
c0=SXeigenvec(1,best_vector_ovrlp_casscf)
do i=1,nMonoEx+1
SXvector(i)=SXeigenvec(i,best_vector_ovrlp_casscf)/c0
end do
END_PROVIDER
BEGIN_PROVIDER [double precision, NewOrbs, (ao_num,mo_num) ]
implicit none
BEGIN_DOC
! Updated orbitals
END_DOC
integer :: i,j,ialph
if(state_following_casscf)then
print*,'Using the state following casscf '
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
NatOrbsFCI, size(NatOrbsFCI,1), &
Umat, size(Umat,1), 0.d0, &
NewOrbs, size(NewOrbs,1))
level_shift_casscf *= 0.5D0
level_shift_casscf = max(level_shift_casscf,0.002d0)
!touch level_shift_casscf
else
if(best_vector_ovrlp_casscf.ne.1.and.n_orb_swap.ne.0)then
print*,'Taking the lowest root for the CASSCF'
print*,'!!! SWAPPING MOS !!!!!!'
level_shift_casscf *= 2.D0
level_shift_casscf = min(level_shift_casscf,0.5d0)
print*,'level_shift_casscf = ',level_shift_casscf
NewOrbs = switch_mo_coef
!mo_coef = switch_mo_coef
!soft_touch mo_coef
!call save_mos_no_occ
!stop
else
level_shift_casscf *= 0.5D0
level_shift_casscf = max(level_shift_casscf,0.002d0)
!touch level_shift_casscf
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
NatOrbsFCI, size(NatOrbsFCI,1), &
Umat, size(Umat,1), 0.d0, &
NewOrbs, size(NewOrbs,1))
endif
endif
END_PROVIDER
BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! Orbital rotation matrix
END_DOC
integer :: i,j,indx,k,iter,t,a,ii,tt,aa
logical :: converged
real*8 :: Tpotmat (mo_num,mo_num), Tpotmat2 (mo_num,mo_num)
real*8 :: Tmat(mo_num,mo_num)
real*8 :: f
! the orbital rotation matrix T
Tmat(:,:)=0.D0
indx=1
do i=1,n_core_inact_orb
ii=list_core_inact(i)
do t=1,n_act_orb
tt=list_act(t)
indx+=1
Tmat(ii,tt)= SXvector(indx)
Tmat(tt,ii)=-SXvector(indx)
end do
end do
do i=1,n_core_inact_orb
ii=list_core_inact(i)
do a=1,n_virt_orb
aa=list_virt(a)
indx+=1
Tmat(ii,aa)= SXvector(indx)
Tmat(aa,ii)=-SXvector(indx)
end do
end do
do t=1,n_act_orb
tt=list_act(t)
do a=1,n_virt_orb
aa=list_virt(a)
indx+=1
Tmat(tt,aa)= SXvector(indx)
Tmat(aa,tt)=-SXvector(indx)
end do
end do
! Form the exponential
Tpotmat(:,:)=0.D0
Umat(:,:) =0.D0
do i=1,mo_num
Tpotmat(i,i)=1.D0
Umat(i,i) =1.d0
end do
iter=0
converged=.false.
do while (.not.converged)
iter+=1
f = 1.d0 / dble(iter)
Tpotmat2(:,:) = Tpotmat(:,:) * f
call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
Tpotmat2, size(Tpotmat2,1), &
Tmat, size(Tmat,1), 0.d0, &
Tpotmat, size(Tpotmat,1))
Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
end do
END_PROVIDER