9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-06 18:32:58 +01:00
qp2/plugins/local/tc_bi_ortho/h_mat_triple.irp.f

392 lines
12 KiB
Fortran

subroutine get_excitation_general(key_i,key_j, Nint,degree_array,holes_array, particles_array,phase)
use bitmasks
BEGIN_DOC
! returns the array, for each spin, of holes/particles between key_i and key_j
!
! with the following convention: a^+_{particle} a_{hole}|key_i> = |key_j>
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
integer, intent(out) :: holes_array(100,2),particles_array(100,2),degree_array(2)
double precision, intent(out) :: phase
integer :: ispin,k,i,pos
integer(bit_kind) :: key_hole, key_particle
integer(bit_kind) :: xorvec(N_int_max,2)
holes_array = -1
particles_array = -1
degree_array = 0
do i = 1, N_int
xorvec(i,1) = xor( key_i(i,1), key_j(i,1))
xorvec(i,2) = xor( key_i(i,2), key_j(i,2))
degree_array(1) += popcnt(xorvec(i,1))
degree_array(2) += popcnt(xorvec(i,2))
enddo
degree_array(1) = shiftr(degree_array(1),1)
degree_array(2) = shiftr(degree_array(2),1)
do ispin = 1, 2
k = 1
!!! GETTING THE HOLES
do i = 1, N_int
key_hole = iand(xorvec(i,ispin),key_i(i,ispin))
do while(key_hole .ne.0_bit_kind)
pos = trailz(key_hole)
holes_array(k,ispin) = 1+ bit_kind_size * (i-1) + pos
key_hole = ibclr(key_hole,pos)
k += 1
if(k .gt.100)then
print*,'WARNING in get_excitation_general'
print*,'More than a 100-th excitation for spin ',ispin
print*,'stoping ...'
stop
endif
enddo
enddo
enddo
do ispin = 1, 2
k = 1
!!! GETTING THE PARTICLES
do i = 1, N_int
key_particle = iand(xor(key_i(i,ispin),key_j(i,ispin)),key_j(i,ispin))
do while(key_particle .ne.0_bit_kind)
pos = trailz(key_particle)
particles_array(k,ispin) = 1+ bit_kind_size * (i-1) + pos
key_particle = ibclr(key_particle,pos)
k += 1
if(k .gt.100)then
print*,'WARNING in get_excitation_general '
print*,'More than a 100-th excitation for spin ',ispin
print*,'stoping ...'
stop
endif
enddo
enddo
enddo
integer :: h,p, i_ok
integer(bit_kind), allocatable :: det_i(:,:),det_ip(:,:)
integer :: exc(0:2,2,2)
double precision :: phase_tmp
allocate(det_i(Nint,2),det_ip(N_int,2))
det_i = key_i
phase = 1.d0
do ispin = 1, 2
do i = 1, degree_array(ispin)
h = holes_array(i,ispin)
p = particles_array(i,ispin)
det_ip = det_i
call do_single_excitation(det_ip,h,p,ispin,i_ok)
if(i_ok == -1)then
print*,'excitation was not possible '
stop
endif
call get_single_excitation(det_i,det_ip,exc,phase_tmp,Nint)
phase *= phase_tmp
det_i = det_ip
enddo
enddo
end
subroutine get_holes_general(key_i, key_j,Nint, holes_array)
use bitmasks
BEGIN_DOC
! returns the array, per spin, of holes between key_i and key_j
!
! with the following convention: a_{hole}|key_i> --> |key_j>
END_DOC
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
integer, intent(out) :: holes_array(100,2)
integer(bit_kind) :: key_hole
integer :: ispin,k,i,pos
holes_array = -1
do ispin = 1, 2
k = 1
do i = 1, N_int
key_hole = iand(xor(key_i(i,ispin),key_j(i,ispin)),key_i(i,ispin))
do while(key_hole .ne.0_bit_kind)
pos = trailz(key_hole)
holes_array(k,ispin) = 1+ bit_kind_size * (i-1) + pos
key_hole = ibclr(key_hole,pos)
k += 1
if(k .gt.100)then
print*,'WARNING in get_holes_general'
print*,'More than a 100-th excitation for spin ',ispin
print*,'stoping ...'
stop
endif
enddo
enddo
enddo
end
subroutine get_particles_general(key_i, key_j,Nint,particles_array)
use bitmasks
BEGIN_DOC
! returns the array, per spin, of particles between key_i and key_j
!
! with the following convention: a^dagger_{particle}|key_i> --> |key_j>
END_DOC
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
integer, intent(out) :: particles_array(100,2)
integer(bit_kind) :: key_particle
integer :: ispin,k,i,pos
particles_array = -1
do ispin = 1, 2
k = 1
do i = 1, N_int
key_particle = iand(xor(key_i(i,ispin),key_j(i,ispin)),key_j(i,ispin))
do while(key_particle .ne.0_bit_kind)
pos = trailz(key_particle)
particles_array(k,ispin) = 1+ bit_kind_size * (i-1) + pos
key_particle = ibclr(key_particle,pos)
k += 1
if(k .gt.100)then
print*,'WARNING in get_holes_general'
print*,'More than a 100-th excitation for spin ',ispin
print*,'Those are the two determinants'
call debug_det(key_i, N_int)
call debug_det(key_j, N_int)
print*,'stoping ...'
stop
endif
enddo
enddo
enddo
end
subroutine get_phase_general(key_i,Nint,degree, holes_array, particles_array,phase)
implicit none
integer, intent(in) :: degree(2), Nint
integer(bit_kind), intent(in) :: key_i(Nint,2)
integer, intent(in) :: holes_array(100,2),particles_array(100,2)
double precision, intent(out) :: phase
integer :: i,ispin,h,p, i_ok
integer(bit_kind), allocatable :: det_i(:,:),det_ip(:,:)
integer :: exc(0:2,2,2)
double precision :: phase_tmp
allocate(det_i(Nint,2),det_ip(N_int,2))
det_i = key_i
phase = 1.d0
do ispin = 1, 2
do i = 1, degree(ispin)
h = holes_array(i,ispin)
p = particles_array(i,ispin)
det_ip = det_i
call do_single_excitation(det_ip,h,p,ispin,i_ok)
if(i_ok == -1)then
print*,'excitation was not possible '
stop
endif
call get_single_excitation(det_i,det_ip,exc,phase_tmp,Nint)
phase *= phase_tmp
det_i = det_ip
enddo
enddo
end
subroutine H_tc_s2_u_0_with_pure_three(v_0, s_0, u_0, N_st, sze)
BEGIN_DOC
! Computes $v_0 = H^TC | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
use bitmasks
implicit none
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u_0(sze,N_st)
double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st)
call H_tc_s2_u_0_opt(v_0, s_0, u_0, N_st, sze)
integer :: i,j,degree,ist
double precision :: hmono, htwoe, hthree, htot
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
if(degree .ne. 3)cycle
call triple_htilde_mu_mat_fock_bi_ortho(N_int, psi_det(1,1,i), psi_det(1,1,j), hmono, htwoe, hthree, htot)
do ist = 1, N_st
v_0(i,ist) += htot * u_0(j,ist)
enddo
enddo
enddo
end
subroutine H_tc_s2_u_0_with_pure_three_omp(v_0, s_0, u_0, N_st, sze)
BEGIN_DOC
! Computes $v_0 = H^TC | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
use bitmasks
implicit none
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u_0(sze,N_st)
double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st)
call H_tc_s2_u_0_opt(v_0, s_0, u_0, N_st, sze)
integer :: i,j,degree,ist
double precision :: hmono, htwoe, hthree, htot
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
!$OMP SHARED(N_st, N_det, N_int, psi_det, u_0, v_0) &
!$OMP PRIVATE(ist, i, j, degree, hmono, htwoe, hthree,htot)
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
if(degree .ne. 3)cycle
call triple_htilde_mu_mat_fock_bi_ortho(N_int, psi_det(1,1,i), psi_det(1,1,j), hmono, htwoe, hthree, htot)
do ist = 1, N_st
v_0(i,ist) += htot * u_0(j,ist)
enddo
enddo
enddo
!$OMP END PARALLEL DO
end
! ---
subroutine H_tc_s2_dagger_u_0_with_pure_three(v_0, s_0, u_0, N_st, sze)
BEGIN_DOC
! Computes $v_0 = (H^TC)^dagger | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
use bitmasks
implicit none
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u_0(sze,N_st)
double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st)
call H_tc_s2_dagger_u_0_opt(v_0, s_0, u_0, N_st, sze)
integer :: i,j,degree,ist
double precision :: hmono, htwoe, hthree, htot
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
if(degree .ne. 3)cycle
call triple_htilde_mu_mat_fock_bi_ortho(N_int, psi_det(1,1,j), psi_det(1,1,i), hmono, htwoe, hthree, htot)
do ist = 1, N_st
v_0(i,ist) += htot * u_0(j,ist)
enddo
enddo
enddo
end
subroutine H_tc_s2_dagger_u_0_with_pure_three_omp(v_0, s_0, u_0, N_st, sze)
BEGIN_DOC
! Computes $v_0 = (H^TC)^dagger | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
use bitmasks
implicit none
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u_0(sze,N_st)
double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st)
call H_tc_s2_dagger_u_0_opt(v_0, s_0, u_0, N_st, sze)
integer :: i,j,degree,ist
double precision :: hmono, htwoe, hthree, htot
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
!$OMP SHARED(N_st, N_det, N_int, psi_det, u_0, v_0) &
!$OMP PRIVATE(ist, i, j, degree, hmono, htwoe, hthree,htot)
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
if(degree .ne. 3)cycle
call triple_htilde_mu_mat_fock_bi_ortho(N_int, psi_det(1,1,j), psi_det(1,1,i), hmono, htwoe, hthree, htot)
do ist = 1, N_st
v_0(i,ist) += htot * u_0(j,ist)
enddo
enddo
enddo
!$OMP END PARALLEL DO
end
! ---
subroutine triple_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot)
use bitmasks
BEGIN_DOC
! <key_j | H_tilde | key_i> for triple excitation
!!
!! WARNING !!
!
! Genuine triple excitations of the same spin are not yet implemented
END_DOC
implicit none
integer(bit_kind), intent(in) :: key_j(N_int,2),key_i(N_int,2)
integer, intent(in) :: Nint
double precision, intent(out) :: hmono, htwoe, hthree, htot
integer :: degree
integer :: h1, p1, h2, p2, s1, s2, h3, p3, s3
integer :: holes_array(100,2),particles_array(100,2),degree_array(2)
double precision :: phase,sym_3_e_int_from_6_idx_tensor
hmono = 0.d0
htwoe = 0.d0
hthree = 0.d0
htot = 0.d0
call get_excitation_general(key_j, key_i, Nint,degree_array,holes_array, particles_array,phase)
degree = degree_array(1) + degree_array(2)
if(degree .ne. 3)return
if(degree_array(1)==3.or.degree_array(2)==3)then
if(degree_array(1) == 3)then
h1 = holes_array(1,1)
h2 = holes_array(2,1)
h3 = holes_array(3,1)
p1 = particles_array(1,1)
p2 = particles_array(2,1)
p3 = particles_array(3,1)
else
h1 = holes_array(1,2)
h2 = holes_array(2,2)
h3 = holes_array(3,2)
p1 = particles_array(1,2)
p2 = particles_array(2,2)
p3 = particles_array(3,2)
endif
hthree = sym_3_e_int_from_6_idx_tensor(p3, p2, p1, h3, h2, h1)
else
if(degree_array(1) == 2.and.degree_array(2) == 1)then ! double alpha + single beta
h1 = holes_array(1,1)
h2 = holes_array(2,1)
h3 = holes_array(1,2)
p1 = particles_array(1,1)
p2 = particles_array(2,1)
p3 = particles_array(1,2)
else if(degree_array(2) == 2 .and. degree_array(1) == 1)then ! double beta + single alpha
h1 = holes_array(1,2)
h2 = holes_array(2,2)
h3 = holes_array(1,1)
p1 = particles_array(1,2)
p2 = particles_array(2,2)
p3 = particles_array(1,1)
else
print*,'PB !!'
stop
endif
hthree = three_body_ints_bi_ort(p3,p2,p1,h3,h2,h1) - three_body_ints_bi_ort(p3,p2,p1,h3,h1,h2)
endif
hthree *= phase
htot = hthree
end