9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-22 11:33:29 +01:00
qp2/src/davidson/u0_h_u0.irp.f

761 lines
23 KiB
Fortran

subroutine u_0_H_u_0(e_0,u_0,n,keys_tmp,Nint,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
! Computes $E_0 = \frac{\langle u_0 | H | u_0 \rangle}{\langle u_0 | u_0 \rangle}$
!
! n : number of determinants
!
END_DOC
integer, intent(in) :: n,Nint, N_st, sze
double precision, intent(out) :: e_0(N_st)
double precision, intent(inout) :: u_0(sze,N_st)
integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n)
double precision, allocatable :: v_0(:,:), u_1(:,:)
double precision :: u_dot_u,u_dot_v,diag_H_mat_elem
integer :: i,j, istate
if ((n > 100000).and.distributed_davidson) then
allocate (v_0(n,N_states_diag), u_1(n,N_states_diag))
u_1(:,:) = 0.d0
u_1(1:n,1:N_st) = u_0(1:n,1:N_st)
call H_u_0_nstates_zmq(v_0,u_1,N_states_diag,n)
else if (n < n_det_max_full) then
allocate (v_0(n,N_st), u_1(n,N_st))
v_0(:,:) = 0.d0
u_1(:,:) = 0.d0
u_1(1:n,1:N_st) = u_0(1:n,1:N_st)
do istate = 1,N_st
do j=1,n
do i=1,n
v_0(i,istate) = v_0(i,istate) + h_matrix_all_dets(i,j) * u_0(j,istate)
enddo
enddo
enddo
else
allocate (v_0(n,N_st),u_1(n,N_st))
u_1(:,:) = 0.d0
u_1(1:n,1:N_st) = u_0(1:n,1:N_st)
call H_u_0_nstates_openmp(v_0,u_1,N_st,n)
endif
u_0(1:n,1:N_st) = u_1(1:n,1:N_st)
deallocate(u_1)
double precision :: norm
!$OMP PARALLEL DO PRIVATE(i,norm) DEFAULT(SHARED)
do i=1,N_st
norm = u_dot_u(u_0(1,i),n)
if (norm /= 0.d0) then
e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n) / dsqrt(norm)
else
e_0(i) = 0.d0
endif
enddo
!$OMP END PARALLEL DO
deallocate (v_0)
end
subroutine H_u_0_nstates_openmp(v_0,u_0,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
! Computes $v_0 = H | u_0\rangle$.
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(inout) :: v_0(sze,N_st), u_0(sze,N_st)
integer :: k
double precision, allocatable :: u_t(:,:), v_t(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
allocate(u_t(N_st,N_det),v_t(N_st,N_det))
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
enddo
v_t = 0.d0
call dtranspose( &
u_0, &
size(u_0, 1), &
u_t, &
size(u_t, 1), &
N_det, N_st)
call H_u_0_nstates_openmp_work(v_t,u_t,N_st,sze,1,N_det,0,1)
deallocate(u_t)
call dtranspose( &
v_t, &
size(v_t, 1), &
v_0, &
size(v_0, 1), &
N_st, N_det)
deallocate(v_t)
do k=1,N_st
call dset_order(v_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
enddo
end
subroutine H_u_0_nstates_openmp_work(v_t,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
! Computes $v_t = H | u_t\rangle$
!
! Default should be 1,N_det,0,1
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
double precision, intent(in) :: u_t(N_st,N_det)
double precision, intent(out) :: v_t(N_st,sze)
PROVIDE ref_bitmask_energy N_int
select case (N_int)
case (1)
call H_u_0_nstates_openmp_work_1(v_t,u_t,N_st,sze,istart,iend,ishift,istep)
case (2)
call H_u_0_nstates_openmp_work_2(v_t,u_t,N_st,sze,istart,iend,ishift,istep)
case (3)
call H_u_0_nstates_openmp_work_3(v_t,u_t,N_st,sze,istart,iend,ishift,istep)
case (4)
call H_u_0_nstates_openmp_work_4(v_t,u_t,N_st,sze,istart,iend,ishift,istep)
case default
call H_u_0_nstates_openmp_work_N_int(v_t,u_t,N_st,sze,istart,iend,ishift,istep)
end select
end
BEGIN_TEMPLATE
subroutine H_u_0_nstates_openmp_work_$N_int(v_t,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
! Computes $v_t = H | u_t \\rangle$
!
! Default should be 1,N_det,0,1
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
double precision, intent(in) :: u_t(N_st,N_det)
double precision, intent(out) :: v_t(N_st,sze)
double precision :: hij
integer :: i,j,k,l,kk
integer :: k_a, k_b, l_a, l_b, m_a, m_b
integer :: istate
integer :: krow, kcol, krow_b, kcol_b
integer :: lrow, lcol
integer :: mrow, mcol
integer(bit_kind) :: spindet($N_int)
integer(bit_kind) :: tmp_det($N_int,2)
integer(bit_kind) :: tmp_det2($N_int,2)
integer(bit_kind) :: tmp_det3($N_int,2)
integer(bit_kind), allocatable :: buffer(:,:)
integer :: n_doubles
integer, allocatable :: doubles(:)
integer, allocatable :: singles_a(:)
integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:)
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
integer*8 :: k8
logical :: compute_singles
integer*8 :: last_found, left, right, right_max
double precision :: rss, mem, ratio
double precision, allocatable :: utl(:,:)
integer, parameter :: block_size=128
logical :: u_is_sparse
! call resident_memory(rss)
! mem = dble(singles_beta_csc_size) / 1024.d0**3
!
! compute_singles = (mem+rss > qp_max_mem)
!
! if (.not.compute_singles) then
! provide singles_beta_csc
! endif
compute_singles=.True.
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
allocate(idx0(maxab))
do i=1,maxab
idx0(i) = i
enddo
! Prepare the array of all alpha single excitations
! -------------------------------------------------
PROVIDE N_int nthreads_davidson
!$OMP PARALLEL DEFAULT(SHARED) NUM_THREADS(nthreads_davidson) &
!$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
!$OMP psi_bilinear_matrix_columns, &
!$OMP psi_det_alpha_unique, psi_det_beta_unique, &
!$OMP n_det_alpha_unique, n_det_beta_unique, N_int, &
!$OMP psi_bilinear_matrix_transp_rows, &
!$OMP psi_bilinear_matrix_transp_columns, &
!$OMP psi_bilinear_matrix_transp_order, N_st, &
!$OMP psi_bilinear_matrix_order_transp_reverse, &
!$OMP psi_bilinear_matrix_columns_loc, &
!$OMP psi_bilinear_matrix_transp_rows_loc, &
!$OMP istart, iend, istep, irp_here, v_t, &
!$OMP ishift, idx0, u_t, maxab, compute_singles, &
!$OMP singles_alpha_csc,singles_alpha_csc_idx, &
!$OMP singles_beta_csc,singles_beta_csc_idx) &
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, &
!$OMP lcol, lrow, l_a, l_b, utl, kk, u_is_sparse, &
!$OMP buffer, doubles, n_doubles, umax, &
!$OMP tmp_det2, hij, idx, l, kcol_prev, &
!$OMP singles_a, n_singles_a, singles_b, ratio, &
!$OMP n_singles_b, k8, last_found,left,right,right_max)
! Alpha/Beta double excitations
! =============================
allocate( buffer($N_int,maxab), &
singles_a(maxab), &
singles_b(maxab), &
doubles(maxab), &
idx(maxab), utl(N_st,block_size))
kcol_prev=-1
! Check if u has multiple zeros
kk=1 ! Avoid division by zero
!$OMP DO
do k=1,N_det
umax = 0.d0
do l=1,N_st
umax = max(umax, dabs(u_t(l,k)))
enddo
if (umax < 1.d-20) then
!$OMP ATOMIC
kk = kk+1
endif
enddo
!$OMP END DO
u_is_sparse = N_det / kk < 20 ! 5%
ASSERT (iend <= N_det)
ASSERT (istart > 0)
ASSERT (istep > 0)
!$OMP DO SCHEDULE(guided,64)
do k_a=istart+ishift,iend,istep
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
if (kcol /= kcol_prev) then
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
if (compute_singles) then
call get_all_spin_singles_$N_int( &
psi_det_beta_unique, idx0, &
tmp_det(1,2), N_det_beta_unique, &
singles_b, n_singles_b)
else
n_singles_b = 0
!DIR$ LOOP COUNT avg(1000)
do k8=singles_beta_csc_idx(kcol),singles_beta_csc_idx(kcol+1)-1
n_singles_b = n_singles_b+1
singles_b(n_singles_b) = singles_beta_csc(k8)
enddo
endif
endif
kcol_prev = kcol
! Loop over singly excited beta columns
! -------------------------------------
!DIR$ LOOP COUNT avg(1000)
do i=1,n_singles_b
lcol = singles_b(i)
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
!---
! if (compute_singles) then
l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det)
!DIR$ UNROLL(8)
!DIR$ LOOP COUNT avg(50000)
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) ! hot spot
ASSERT (l_a <= N_det)
idx(j) = l_a
l_a = l_a+1
enddo
j = j-1
call get_all_spin_singles_$N_int( &
buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a )
!-----
! else
!
! ! Search for singles
!
!call cpu_time(time0)
! ! Right boundary
! l_a = psi_bilinear_matrix_columns_loc(lcol+1)-1
! ASSERT (l_a <= N_det)
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
! lrow = psi_bilinear_matrix_rows(l_a)
! ASSERT (lrow <= N_det_alpha_unique)
!
! left = singles_alpha_csc_idx(krow)
! right_max = -1_8
! right = singles_alpha_csc_idx(krow+1)
! do while (right-left>0_8)
! k8 = shiftr(right+left,1)
! if (singles_alpha_csc(k8) > lrow) then
! right = k8
! else if (singles_alpha_csc(k8) < lrow) then
! left = k8 + 1_8
! else
! right_max = k8+1_8
! exit
! endif
! enddo
! if (right_max > 0_8) exit
! l_a = l_a-1
! enddo
! if (right_max < 0_8) right_max = singles_alpha_csc_idx(krow)
!
! ! Search
! n_singles_a = 0
! l_a = psi_bilinear_matrix_columns_loc(lcol)
! ASSERT (l_a <= N_det)
!
! last_found = singles_alpha_csc_idx(krow)
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
! lrow = psi_bilinear_matrix_rows(l_a)
! ASSERT (lrow <= N_det_alpha_unique)
!
! left = last_found
! right = right_max
! do while (right-left>0_8)
! k8 = shiftr(right+left,1)
! if (singles_alpha_csc(k8) > lrow) then
! right = k8
! else if (singles_alpha_csc(k8) < lrow) then
! left = k8 + 1_8
! else
! n_singles_a += 1
! singles_a(n_singles_a) = l_a
! last_found = k8+1_8
! exit
! endif
! enddo
! l_a = l_a+1
! enddo
! j = j-1
!
! endif
!-----
! Loop over alpha singles
! -----------------------
double precision :: umax
!DIR$ LOOP COUNT avg(1000)
do k = 1,n_singles_a,block_size
umax = 0.d0
! Prefetch u_t(:,l_a)
if (u_is_sparse) then
do kk=0,block_size-1
if (k+kk > n_singles_a) exit
l_a = singles_a(k+kk)
ASSERT (l_a <= N_det)
do l=1,N_st
utl(l,kk+1) = u_t(l,l_a)
umax = max(umax, dabs(utl(l,kk+1)))
enddo
enddo
else
do kk=0,block_size-1
if (k+kk > n_singles_a) exit
l_a = singles_a(k+kk)
ASSERT (l_a <= N_det)
utl(:,kk+1) = u_t(:,l_a)
enddo
umax = 1.d0
endif
if (umax < 1.d-20) cycle
do kk=0,block_size-1
if (k+kk > n_singles_a) exit
l_a = singles_a(k+kk)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
call i_H_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij)
!DIR$ LOOP COUNT AVG(4)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP DO SCHEDULE(guided,64)
do k_a=istart+ishift,iend,istep
! Single and double alpha excitations
! ===================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
! Initial determinant is at k_b in beta-major representation
! ----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
spindet(1:$N_int) = tmp_det(1:$N_int,1)
! Loop inside the beta column to gather all the connected alphas
lcol = psi_bilinear_matrix_columns(k_a)
l_a = psi_bilinear_matrix_columns_loc(lcol)
!DIR$ LOOP COUNT avg(200000)
do i=1,N_det_alpha_unique
if (l_a > N_det) exit
lcol = psi_bilinear_matrix_columns(l_a)
if (lcol /= kcol) exit
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow) ! Hot spot
idx(i) = l_a
l_a = l_a+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_a, doubles, n_singles_a, n_doubles )
! Compute Hij for all alpha singles
! ----------------------------------
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
!DIR$ LOOP COUNT avg(1000)
do i=1,n_singles_a,block_size
umax = 0.d0
! Prefetch u_t(:,l_a)
if (u_is_sparse) then
do kk=0,block_size-1
if (i+kk > n_singles_a) exit
l_a = singles_a(i+kk)
ASSERT (l_a <= N_det)
do l=1,N_st
utl(l,kk+1) = u_t(l,l_a)
umax = max(umax, dabs(utl(l,kk+1)))
enddo
enddo
else
do kk=0,block_size-1
if (i+kk > n_singles_a) exit
l_a = singles_a(i+kk)
ASSERT (l_a <= N_det)
utl(:,kk+1) = u_t(:,l_a)
enddo
umax = 1.d0
endif
if (umax < 1.d-20) cycle
do kk=0,block_size-1
if (i+kk > n_singles_a) exit
l_a = singles_a(i+kk)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
call i_h_j_single_spin( tmp_det, tmp_det2, $N_int, 1, hij)
!DIR$ LOOP COUNT AVG(4)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
enddo
enddo
enddo
! Compute Hij for all alpha doubles
! ----------------------------------
!DIR$ LOOP COUNT avg(50000)
do i=1,n_doubles,block_size
umax = 0.d0
! Prefetch u_t(:,l_a)
if (u_is_sparse) then
do kk=0,block_size-1
if (i+kk > n_doubles) exit
l_a = doubles(i+kk)
ASSERT (l_a <= N_det)
do l=1,N_st
utl(l,kk+1) = u_t(l,l_a)
umax = max(umax, dabs(utl(l,kk+1)))
enddo
enddo
else
do kk=0,block_size-1
if (i+kk > n_doubles) exit
l_a = doubles(i+kk)
ASSERT (l_a <= N_det)
utl(:,kk+1) = u_t(:,l_a)
enddo
umax = 1.d0
endif
if (umax < 1.d-20) cycle
do kk=0,block_size-1
if (i+kk > n_doubles) exit
l_a = doubles(i+kk)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
!DIR$ LOOP COUNT AVG(4)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
enddo
enddo
enddo
! Single and double beta excitations
! ==================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
spindet(1:$N_int) = tmp_det(1:$N_int,2)
! Initial determinant is at k_b in beta-major representation
! -----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
! Loop inside the alpha row to gather all the connected betas
lrow = psi_bilinear_matrix_transp_rows(k_b)
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
!DIR$ LOOP COUNT avg(200000)
do i=1,N_det_beta_unique
if (l_b > N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l_b)
if (lrow /= krow) exit
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
idx(i) = l_b
l_b = l_b+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_b, doubles, n_singles_b, n_doubles )
! Compute Hij for all beta singles
! ----------------------------------
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
!DIR$ LOOP COUNT avg(1000)
do i=1,n_singles_b,block_size
umax = 0.d0
if (u_is_sparse) then
do kk=0,block_size-1
if (i+kk > n_singles_b) exit
l_b = singles_b(i+kk)
l_a = psi_bilinear_matrix_transp_order(l_b)
ASSERT (l_b <= N_det)
ASSERT (l_a <= N_det)
do l=1,N_st
utl(l,kk+1) = u_t(l,l_a)
umax = max(umax, dabs(utl(l,kk+1)))
enddo
enddo
else
do kk=0,block_size-1
if (i+kk > n_singles_b) exit
l_b = singles_b(i+kk)
l_a = psi_bilinear_matrix_transp_order(l_b)
ASSERT (l_b <= N_det)
ASSERT (l_a <= N_det)
utl(:,kk+1) = u_t(:,l_a)
enddo
umax = 1.d0
endif
if (umax < 1.d-20) cycle
do kk=0,block_size-1
if (i+kk > n_singles_b) exit
l_b = singles_b(i+kk)
l_a = psi_bilinear_matrix_transp_order(l_b)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
call i_h_j_single_spin( tmp_det, tmp_det2, $N_int, 2, hij)
!DIR$ LOOP COUNT AVG(4)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
enddo
enddo
enddo
! Compute Hij for all beta doubles
! ----------------------------------
!DIR$ LOOP COUNT avg(50000)
do i=1,n_doubles,block_size
umax = 0.d0
if (u_is_sparse) then
do kk=0,block_size-1
if (i+kk > n_doubles) exit
l_b = doubles(i+kk)
l_a = psi_bilinear_matrix_transp_order(l_b)
ASSERT (l_b <= N_det)
ASSERT (l_a <= N_det)
do l=1,N_st
utl(l,kk+1) = u_t(l,l_a)
umax = max(umax, dabs(utl(l,kk+1)))
enddo
enddo
else
do kk=0,block_size-1
if (i+kk > n_doubles) exit
l_b = doubles(i+kk)
l_a = psi_bilinear_matrix_transp_order(l_b)
ASSERT (l_b <= N_det)
ASSERT (l_a <= N_det)
utl(:,kk+1) = u_t(:,l_a)
enddo
umax = 1.d0
endif
if (umax < 1.d-20) cycle
do kk=0,block_size-1
if (i+kk > n_doubles) exit
l_b = doubles(i+kk)
l_a = psi_bilinear_matrix_transp_order(l_b)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
!DIR$ LOOP COUNT AVG(4)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
enddo
enddo
enddo
! Diagonal contribution
! =====================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
if (u_is_sparse) then
umax = 0.d0
do l=1,N_st
umax = max(umax, dabs(u_t(l,k_a)))
enddo
else
umax = 1.d0
endif
if (umax < 1.d-20) cycle
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
double precision, external :: diag_H_mat_elem
hij = diag_H_mat_elem(tmp_det,$N_int)
!DIR$ LOOP COUNT AVG(4)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a)
enddo
end do
!$OMP END DO
deallocate(buffer, singles_a, singles_b, doubles, idx, utl)
!$OMP END PARALLEL
end
SUBST [ N_int ]
1;;
2;;
3;;
4;;
N_int;;
END_TEMPLATE