9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-07 02:43:01 +01:00
qp2/plugins/local/slater_tc/slater_tc_opt_double.irp.f
2024-05-07 20:32:48 +02:00

568 lines
19 KiB
Fortran

! ---
subroutine double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot)
BEGIN_DOC
! <key_j |H_tilde | key_i> for double excitation ONLY FOR ONE- AND TWO-BODY TERMS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: hmono, htwoe, hthree, htot
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
double precision :: get_mo_two_e_integral_tc_int,phase
call get_excitation_degree(key_i, key_j, degree, Nint)
hmono = 0.d0
htwoe = 0.d0
hthree = 0.d0
htot = 0.d0
if(degree .ne. 2) then
return
endif
integer :: degree_i, degree_j
call get_excitation_degree(ref_bitmask, key_i, degree_i, N_int)
call get_excitation_degree(ref_bitmask, key_j, degree_j, N_int)
call get_double_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
if(s1 .ne. s2) then
! opposite spin two-body
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
if(three_body_h_tc .and. (elec_num .gt. 2)) then
! add 3-e term
if(.not.double_normal_ord .and. three_e_5_idx_term) then
! 5-idx approx
if(degree_i > degree_j) then
call three_comp_two_e_elem(key_j,h1,h2,p1,p2,s1,s2,hthree)
else
call three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
endif
elseif(double_normal_ord) then
! noL a la Manu
htwoe += normal_two_body_bi_orth(p2,h2,p1,h1)
endif
endif
else
! same spin two-body
! direct terms
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
! exchange terms
htwoe -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1)
if(three_body_h_tc .and. (elec_num .gt. 2)) then
! add 3-e term
if(.not.double_normal_ord.and.three_e_5_idx_term)then
! 5-idx approx
if(degree_i > degree_j) then
call three_comp_two_e_elem(key_j,h1,h2,p1,p2,s1,s2,hthree)
else
call three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
endif
elseif(double_normal_ord) then
! noL a la Manu
htwoe -= normal_two_body_bi_orth(h2,p1,h1,p2)
htwoe += normal_two_body_bi_orth(h1,p1,h2,p2)
endif
endif
endif
hthree *= phase
htwoe *= phase
htot = htwoe + hthree
end
! ---
subroutine three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
implicit none
integer(bit_kind), intent(in) :: key_i(N_int,2)
integer, intent(in) :: h1,h2,p1,p2,s1,s2
double precision, intent(out) :: hthree
integer :: nexc(2),i,ispin,na,nb
integer(bit_kind) :: hole(N_int,2)
integer(bit_kind) :: particle(N_int,2)
integer :: occ_hole(N_int*bit_kind_size,2)
integer :: occ_particle(N_int*bit_kind_size,2)
integer :: n_occ_ab_hole(2),n_occ_ab_particle(2)
integer(bit_kind) :: det_tmp(N_int,2)
integer :: ipart, ihole
double precision :: direct_int, exchange_int
nexc(1) = 0
nexc(2) = 0
!! Get all the holes and particles of key_i with respect to the ROHF determinant
do i=1,N_int
hole(i,1) = xor(key_i(i,1),ref_bitmask(i,1))
hole(i,2) = xor(key_i(i,2),ref_bitmask(i,2))
particle(i,1) = iand(hole(i,1),key_i(i,1))
particle(i,2) = iand(hole(i,2),key_i(i,2))
hole(i,1) = iand(hole(i,1),ref_bitmask(i,1))
hole(i,2) = iand(hole(i,2),ref_bitmask(i,2))
nexc(1) = nexc(1) + popcnt(hole(i,1))
nexc(2) = nexc(2) + popcnt(hole(i,2))
enddo
integer :: tmp(2)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(particle, occ_particle, tmp, N_int)
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
ASSERT (tmp(2) == nexc(2)) ! Number of particle beta
!DIR$ FORCEINLINE
call bitstring_to_list_ab(hole, occ_hole, tmp, N_int)
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
if(s1==s2.and.s1==1)then
!!!!!!!!!!!!!!!!!!!!!!!!!! alpha/alpha double exc
hthree = eff_2_e_from_3_e_aa(p2,p1,h2,h1)
if(nexc(1)+nexc(2) ==0)return !! if you're on the reference determinant
!!!!!!!! the matrix element is already exact
!!!!!!!! else you need to take care of holes and particles
!!!!!!!!!!!!! Holes and particles !!!!!!!!!!!!!!!!!!!!!!!
ispin = 1 ! i==alpha ==> pure same spin terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
ipart=occ_particle(i,ispin)
hthree += three_e_double_parrallel_spin_prov(ipart,p2,h2,p1,h1)
ihole=occ_hole(i,ispin)
hthree -= three_e_double_parrallel_spin_prov(ihole,p2,h2,p1,h1)
enddo
ispin = 2 ! i==beta ==> alpha/alpha/beta terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
! exchange between (h1,p1) and (h2,p2)
ipart=occ_particle(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1)
! exchange_int = three_e_5_idx_exch12_bi_ort(ipart,p2,h2,p1,h1)
exchange_int = three_e_5_idx_direct_bi_ort(ipart,p2,h1,p1,h2)
hthree += direct_int - exchange_int
ihole=occ_hole(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1)
! exchange_int = three_e_5_idx_exch12_bi_ort(ihole,p2,h2,p1,h1)
exchange_int = three_e_5_idx_direct_bi_ort(ihole,p2,h1,p1,h2)
hthree -= direct_int - exchange_int
enddo
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
elseif(s1==s2.and.s1==2)then
!!!!!!!!!!!!!!!!!!!!!!!!!! beta/beta double exc
hthree = eff_2_e_from_3_e_bb(p2,p1,h2,h1)
if(nexc(1)+nexc(2) ==0)return !! if you're on the reference determinant
!!!!!!!! the matrix element is already exact
!!!!!!!! else you need to take care of holes and particles
!!!!!!!!!!!!! Holes and particles !!!!!!!!!!!!!!!!!!!!!!!
ispin = 2 ! i==beta ==> pure same spin terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
ipart=occ_particle(i,ispin)
hthree += three_e_double_parrallel_spin_prov(ipart,p2,h2,p1,h1)
ihole=occ_hole(i,ispin)
hthree -= three_e_double_parrallel_spin_prov(ihole,p2,h2,p1,h1)
enddo
ispin = 1 ! i==alpha==> beta/beta/alpha terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
! exchange between (h1,p1) and (h2,p2)
ipart=occ_particle(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1)
! exchange_int = three_e_5_idx_exch12_bi_ort(ipart,p2,h2,p1,h1)
exchange_int = three_e_5_idx_direct_bi_ort(ipart,p2,h1,p1,h2)
hthree += direct_int - exchange_int
ihole=occ_hole(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1)
! exchange_int = three_e_5_idx_exch12_bi_ort(ihole,p2,h2,p1,h1)
exchange_int = three_e_5_idx_direct_bi_ort(ihole,p2,h1,p1,h2)
hthree -= direct_int - exchange_int
enddo
else ! (h1,p1) == alpha/(h2,p2) == beta
hthree = eff_2_e_from_3_e_ab(p2,p1,h2,h1)
if(nexc(1)+nexc(2) ==0)return !! if you're on the reference determinant
!!!!!!!! the matrix element is already exact
!!!!!!!! else you need to take care of holes and particles
!!!!!!!!!!!!! Holes and particles !!!!!!!!!!!!!!!!!!!!!!!
ispin = 1 ! i==alpha ==> alpha/beta/alpha terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
! exchange between (h1,p1) and i
ipart=occ_particle(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch13_bi_ort(ipart,p2,h2,p1,h1)
hthree += direct_int - exchange_int
ihole=occ_hole(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch13_bi_ort(ihole,p2,h2,p1,h1)
hthree -= direct_int - exchange_int
enddo
ispin = 2 ! i==beta ==> alpha/beta/beta terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
! exchange between (h2,p2) and i
ipart=occ_particle(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch23_bi_ort(ipart,p2,h2,p1,h1)
hthree += direct_int - exchange_int
ihole=occ_hole(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch23_bi_ort(ihole,p2,h2,p1,h1)
hthree -= direct_int - exchange_int
enddo
endif
end
BEGIN_PROVIDER [ double precision, eff_2_e_from_3_e_ab, (mo_num, mo_num, mo_num, mo_num)]
implicit none
BEGIN_DOC
! eff_2_e_from_3_e_ab(p2,p1,h2,h1) = Effective Two-electron operator for alpha/beta double excitations
!
! from contraction with HF density = a^{dagger}_p1_alpha a^{dagger}_p2_beta a_h2_beta a_h1_alpha
END_DOC
integer :: i,h1,p1,h2,p2
integer :: hh1,hh2,pp1,pp2,m,mm
integer :: Ne(2)
integer, allocatable :: occ(:,:)
double precision :: contrib
allocate( occ(N_int*bit_kind_size,2) )
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
call give_contrib_for_abab(1,1,1,1,occ,Ne,contrib)
eff_2_e_from_3_e_ab = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, contrib) &
!$OMP SHARED (n_act_orb, list_act, Ne,occ, eff_2_e_from_3_e_ab)
!$OMP DO SCHEDULE (static)
do hh1 = 1, n_act_orb !! alpha
h1 = list_act(hh1)
do hh2 = 1, n_act_orb !! beta
h2 = list_act(hh2)
do pp1 = 1, n_act_orb !! alpha
p1 = list_act(pp1)
do pp2 = 1, n_act_orb !! beta
p2 = list_act(pp2)
call give_contrib_for_abab(h1,h2,p1,p2,occ,Ne,contrib)
eff_2_e_from_3_e_ab(p2,p1,h2,h1) = contrib
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
END_PROVIDER
subroutine give_contrib_for_abab(h1,h2,p1,p2,occ,Ne,contrib)
implicit none
BEGIN_DOC
! gives the contribution for a double excitation (h1,p1)_alpha (h2,p2)_beta
!
! on top of a determinant whose occupied orbitals is in (occ, Ne)
END_DOC
integer, intent(in) :: h1,h2,p1,p2,occ(N_int*bit_kind_size,2),Ne(2)
double precision, intent(out) :: contrib
integer :: mm,m
double precision :: direct_int, exchange_int
!! h1,p1 == alpha
!! h2,p2 == beta
contrib = 0.d0
do mm = 1, Ne(1) !! alpha
m = occ(mm,1)
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
! exchange between (h1,p1) and m
exchange_int = three_e_5_idx_exch13_bi_ort(mm,p2,h2,p1,h1)
contrib += direct_int - exchange_int
enddo
do mm = 1, Ne(2) !! beta
m = occ(mm,2)
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
! exchange between (h2,p2) and m
exchange_int = three_e_5_idx_exch23_bi_ort(mm,p2,h2,p1,h1)
contrib += direct_int - exchange_int
enddo
end
BEGIN_PROVIDER [ double precision, eff_2_e_from_3_e_aa, (mo_num, mo_num, mo_num, mo_num)]
implicit none
BEGIN_DOC
! eff_2_e_from_3_e_ab(p2,p1,h2,h1) = Effective Two-electron operator for alpha/alpha double excitations
!
! from contractionelec_alpha_num with HF density = a^{dagger}_p1_alpha a^{dagger}_p2_alpha a_h2_alpha a_h1_alpha
!
! WARNING :: to be coherent with the phase convention used in the Hamiltonian matrix elements, you must fulfill
!
! |||| h2>h1, p2>p1 ||||
END_DOC
integer :: i,h1,p1,h2,p2
integer :: hh1,hh2,pp1,pp2,m,mm
integer :: Ne(2)
integer, allocatable :: occ(:,:)
double precision :: contrib
allocate( occ(N_int*bit_kind_size,2) )
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
call give_contrib_for_aaaa(1 ,1 ,1 ,1 ,occ,Ne,contrib)
eff_2_e_from_3_e_aa = 100000000.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, contrib) &
!$OMP SHARED (n_act_orb, list_act, Ne,occ, eff_2_e_from_3_e_aa)
!$OMP DO SCHEDULE (static)
do hh1 = 1, n_act_orb !! alpha
h1 = list_act(hh1)
do hh2 = hh1+1, n_act_orb !! alpha
h2 = list_act(hh2)
do pp1 = 1, n_act_orb !! alpha
p1 = list_act(pp1)
do pp2 = pp1+1, n_act_orb !! alpha
p2 = list_act(pp2)
call give_contrib_for_aaaa(h1,h2,p1,p2,occ,Ne,contrib)
eff_2_e_from_3_e_aa(p2,p1,h2,h1) = contrib
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
END_PROVIDER
subroutine give_contrib_for_aaaa(h1,h2,p1,p2,occ,Ne,contrib)
implicit none
BEGIN_DOC
! gives the contribution for a double excitation (h1,p1)_alpha (h2,p2)_alpha
!
! on top of a determinant whose occupied orbitals is in (occ, Ne)
END_DOC
integer, intent(in) :: h1,h2,p1,p2,occ(N_int*bit_kind_size,2),Ne(2)
double precision, intent(out) :: contrib
integer :: mm,m
double precision :: direct_int, exchange_int
!! h1,p1 == alpha
!! h2,p2 == alpha
contrib = 0.d0
do mm = 1, Ne(1) !! alpha ==> pure parallele spin contribution
m = occ(mm,1)
contrib += three_e_double_parrallel_spin_prov(m,p2,h2,p1,h1)
enddo
do mm = 1, Ne(2) !! beta
m = occ(mm,2)
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
! exchange between (h1,p1) and (h2,p2)
! exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
exchange_int = three_e_5_idx_direct_bi_ort(mm,p2,h1,p1,h2)
contrib += direct_int - exchange_int
enddo
end
BEGIN_PROVIDER [ double precision, eff_2_e_from_3_e_bb, (mo_num, mo_num, mo_num, mo_num)]
implicit none
BEGIN_DOC
! eff_2_e_from_3_e_ab(p2,p1,h2,h1) = Effective Two-electron operator for beta/beta double excitations
!
! from contractionelec_beta_num with HF density = a^{dagger}_p1_beta a^{dagger}_p2_beta a_h2_beta a_h1_beta
!
! WARNING :: to be coherent with the phase convention used in the Hamiltonian matrix elements, you must fulfill
!
! |||| h2>h1, p2>p1 ||||
END_DOC
integer :: i,h1,p1,h2,p2
integer :: hh1,hh2,pp1,pp2,m,mm
integer :: Ne(2)
integer, allocatable :: occ(:,:)
double precision :: contrib
allocate( occ(N_int*bit_kind_size,2) )
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
call give_contrib_for_bbbb(1,1 ,1 ,1 ,occ,Ne,contrib)
eff_2_e_from_3_e_bb = 100000000.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, contrib) &
!$OMP SHARED (n_act_orb, list_act, Ne,occ, eff_2_e_from_3_e_bb)
!$OMP DO SCHEDULE (static)
do hh1 = 1, n_act_orb !! beta
h1 = list_act(hh1)
do hh2 = hh1+1, n_act_orb !! beta
h2 = list_act(hh2)
do pp1 = 1, n_act_orb !! beta
p1 = list_act(pp1)
do pp2 = pp1+1, n_act_orb !! beta
p2 = list_act(pp2)
call give_contrib_for_bbbb(h1,h2,p1,p2,occ,Ne,contrib)
eff_2_e_from_3_e_bb(p2,p1,h2,h1) = contrib
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
END_PROVIDER
subroutine give_contrib_for_bbbb(h1,h2,p1,p2,occ,Ne,contrib)
implicit none
BEGIN_DOC
! gives the contribution for a double excitation (h1,p1)_beta (h2,p2)_beta
!
! on top of a determinant whose occupied orbitals is in (occ, Ne)
END_DOC
integer, intent(in) :: h1,h2,p1,p2,occ(N_int*bit_kind_size,2),Ne(2)
double precision, intent(out) :: contrib
integer :: mm,m
double precision :: direct_int, exchange_int
!! h1,p1 == beta
!! h2,p2 == beta
contrib = 0.d0
do mm = 1, Ne(2) !! beta ==> pure parallele spin contribution
m = occ(mm,1)
contrib += three_e_double_parrallel_spin_prov(m,p2,h2,p1,h1)
enddo
do mm = 1, Ne(1) !! alpha
m = occ(mm,1)
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
! exchange between (h1,p1) and (h2,p2)
! exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
exchange_int = three_e_5_idx_direct_bi_ort(mm,p2,h1,p1,h2)
contrib += direct_int - exchange_int
enddo
end
subroutine double_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_j, key_i, htot)
BEGIN_DOC
! <key_j |H_tilde | key_i> for double excitation ONLY FOR ONE- AND TWO-BODY TERMS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: htot
double precision :: hmono, htwoe
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
double precision :: get_mo_two_e_integral_tc_int,phase
call get_excitation_degree(key_i, key_j, degree, Nint)
hmono = 0.d0
htwoe = 0.d0
htot = 0.d0
if(degree.ne.2)then
return
endif
integer :: degree_i,degree_j
call get_excitation_degree(ref_bitmask,key_i,degree_i,N_int)
call get_excitation_degree(ref_bitmask,key_j,degree_j,N_int)
call get_double_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
if(s1.ne.s2)then
! opposite spin two-body
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
else
! same spin two-body
! direct terms
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
! exchange terms
htwoe -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1)
endif
htwoe *= phase
htot = htwoe
end
subroutine double_htilde_mu_mat_fock_bi_ortho_no_3e_both(Nint, key_j, key_i, hji,hij)
BEGIN_DOC
! <key_j |H_tilde | key_i> and <key_i |H_tilde | key_j> for double excitation ONLY FOR ONE- AND TWO-BODY TERMS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: hji,hij
double precision :: hmono, htwoe_ji, htwoe_ij
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
double precision :: get_mo_two_e_integral_tc_int,phase
call get_excitation_degree(key_i, key_j, degree, Nint)
hmono = 0.d0
htwoe_ji = 0.d0
htwoe_ij = 0.d0
hji = 0.d0
hij = 0.d0
if(degree.ne.2)then
return
endif
integer :: degree_i,degree_j
call get_excitation_degree(ref_bitmask,key_i,degree_i,N_int)
call get_excitation_degree(ref_bitmask,key_j,degree_j,N_int)
call get_double_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
if(s1.ne.s2)then
! opposite spin two-body
htwoe_ji = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
htwoe_ij = mo_bi_ortho_tc_two_e_transp(p2,p1,h2,h1)
else
! same spin two-body
! direct terms
htwoe_ji = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
htwoe_ij = mo_bi_ortho_tc_two_e_transp(p2,p1,h2,h1)
! exchange terms
htwoe_ji -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1)
htwoe_ij -= mo_bi_ortho_tc_two_e_transp(p1,p2,h2,h1)
endif
htwoe_ji *= phase
hji = htwoe_ji
htwoe_ij *= phase
hij = htwoe_ij
end