mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-26 13:23:29 +01:00
381 lines
18 KiB
Fortran
381 lines
18 KiB
Fortran
|
|
BEGIN_PROVIDER[double precision, energy_x_sr_pbe, (N_states) ]
|
|
&BEGIN_PROVIDER[double precision, energy_c_sr_pbe, (N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! exchange / correlation energies with the short-range version Perdew-Burke-Ernzerhof GGA functional
|
|
!
|
|
! defined in Chem. Phys.329, 276 (2006)
|
|
END_DOC
|
|
BEGIN_DOC
|
|
! exchange/correlation energy with the short range pbe functional
|
|
END_DOC
|
|
integer :: istate,i,j,m
|
|
double precision :: mu,weight
|
|
double precision :: ex, ec
|
|
double precision :: rho_a,rho_b,grad_rho_a(3),grad_rho_b(3),grad_rho_a_2,grad_rho_b_2,grad_rho_a_b
|
|
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
|
|
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
|
|
|
|
|
|
energy_x_sr_pbe = 0.d0
|
|
energy_c_sr_pbe = 0.d0
|
|
do istate = 1, N_states
|
|
do i = 1, n_points_final_grid
|
|
weight = final_weight_at_r_vector(i)
|
|
rho_a = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
|
rho_b = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
|
grad_rho_a(1:3) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
|
grad_rho_b(1:3) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
|
grad_rho_a_2 = 0.d0
|
|
grad_rho_b_2 = 0.d0
|
|
grad_rho_a_b = 0.d0
|
|
do m = 1, 3
|
|
grad_rho_a_2 += grad_rho_a(m) * grad_rho_a(m)
|
|
grad_rho_b_2 += grad_rho_b(m) * grad_rho_b(m)
|
|
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
|
|
enddo
|
|
|
|
! inputs
|
|
call GGA_sr_type_functionals(mu_erf_dft,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
|
energy_x_sr_pbe(istate) += ex * weight
|
|
energy_c_sr_pbe(istate) += ec * weight
|
|
enddo
|
|
enddo
|
|
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, potential_x_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, potential_x_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, potential_c_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, potential_c_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! exchange / correlation potential for alpha / beta electrons with the short-range version Perdew-Burke-Ernzerhof GGA functional
|
|
!
|
|
! defined in Chem. Phys.329, 276 (2006)
|
|
END_DOC
|
|
integer :: i,j,istate
|
|
do istate = 1, n_states
|
|
do i = 1, ao_num
|
|
do j = 1, ao_num
|
|
potential_x_alpha_ao_sr_pbe(j,i,istate) = pot_scal_x_alpha_ao_sr_pbe(j,i,istate) + pot_grad_x_alpha_ao_sr_pbe(j,i,istate) + pot_grad_x_alpha_ao_sr_pbe(i,j,istate)
|
|
potential_x_beta_ao_sr_pbe(j,i,istate) = pot_scal_x_beta_ao_sr_pbe(j,i,istate) + pot_grad_x_beta_ao_sr_pbe(j,i,istate) + pot_grad_x_beta_ao_sr_pbe(i,j,istate)
|
|
|
|
potential_c_alpha_ao_sr_pbe(j,i,istate) = pot_scal_c_alpha_ao_sr_pbe(j,i,istate) + pot_grad_c_alpha_ao_sr_pbe(j,i,istate) + pot_grad_c_alpha_ao_sr_pbe(i,j,istate)
|
|
potential_c_beta_ao_sr_pbe(j,i,istate) = pot_scal_c_beta_ao_sr_pbe(j,i,istate) + pot_grad_c_beta_ao_sr_pbe(j,i,istate) + pot_grad_c_beta_ao_sr_pbe(i,j,istate)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, potential_xc_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, potential_xc_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
|
|
END_DOC
|
|
integer :: i,j,istate
|
|
do istate = 1, n_states
|
|
do i = 1, ao_num
|
|
do j = 1, ao_num
|
|
potential_xc_alpha_ao_sr_pbe(j,i,istate) = pot_scal_xc_alpha_ao_sr_pbe(j,i,istate) + pot_grad_xc_alpha_ao_sr_pbe(j,i,istate) + pot_grad_xc_alpha_ao_sr_pbe(i,j,istate)
|
|
potential_xc_beta_ao_sr_pbe(j,i,istate) = pot_scal_xc_beta_ao_sr_pbe(j,i,istate) + pot_grad_xc_beta_ao_sr_pbe(j,i,istate) + pot_grad_xc_beta_ao_sr_pbe(i,j,istate)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
BEGIN_PROVIDER[double precision, aos_vc_alpha_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_vc_beta_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_vx_alpha_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_vx_beta_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_d_vc_alpha_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_d_vc_beta_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_d_vx_alpha_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_d_vx_beta_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! intermediates to compute the sr_pbe potentials
|
|
!
|
|
! aos_vxc_alpha_sr_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
|
END_DOC
|
|
integer :: istate,i,j,m
|
|
double precision :: mu,weight
|
|
double precision :: ex, ec
|
|
double precision :: rho_a,rho_b,grad_rho_a(3),grad_rho_b(3),grad_rho_a_2,grad_rho_b_2,grad_rho_a_b
|
|
double precision :: contrib_grad_xa(3),contrib_grad_xb(3),contrib_grad_ca(3),contrib_grad_cb(3)
|
|
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
|
|
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
|
|
aos_d_vc_alpha_sr_pbe_w= 0.d0
|
|
aos_d_vc_beta_sr_pbe_w = 0.d0
|
|
aos_d_vx_alpha_sr_pbe_w= 0.d0
|
|
aos_d_vx_beta_sr_pbe_w = 0.d0
|
|
do istate = 1, N_states
|
|
do i = 1, n_points_final_grid
|
|
weight = final_weight_at_r_vector(i)
|
|
|
|
rho_a = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
|
rho_b = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
|
grad_rho_a(1:3) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
|
grad_rho_b(1:3) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
|
grad_rho_a_2 = 0.d0
|
|
grad_rho_b_2 = 0.d0
|
|
grad_rho_a_b = 0.d0
|
|
do m = 1, 3
|
|
grad_rho_a_2 += grad_rho_a(m) * grad_rho_a(m)
|
|
grad_rho_b_2 += grad_rho_b(m) * grad_rho_b(m)
|
|
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
|
|
enddo
|
|
|
|
! inputs
|
|
call GGA_sr_type_functionals(mu_erf_dft,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
|
vx_rho_a *= weight
|
|
vc_rho_a *= weight
|
|
vx_rho_b *= weight
|
|
vc_rho_b *= weight
|
|
do m= 1,3
|
|
contrib_grad_ca(m) = weight * (2.d0 * vc_grad_rho_a_2 * grad_rho_a(m) + vc_grad_rho_a_b * grad_rho_b(m) )
|
|
contrib_grad_xa(m) = weight * (2.d0 * vx_grad_rho_a_2 * grad_rho_a(m) + vx_grad_rho_a_b * grad_rho_b(m) )
|
|
contrib_grad_cb(m) = weight * (2.d0 * vc_grad_rho_b_2 * grad_rho_b(m) + vc_grad_rho_a_b * grad_rho_a(m) )
|
|
contrib_grad_xb(m) = weight * (2.d0 * vx_grad_rho_b_2 * grad_rho_b(m) + vx_grad_rho_a_b * grad_rho_a(m) )
|
|
enddo
|
|
do j = 1, ao_num
|
|
aos_vc_alpha_sr_pbe_w(j,i,istate) = vc_rho_a * aos_in_r_array(j,i)
|
|
aos_vc_beta_sr_pbe_w (j,i,istate) = vc_rho_b * aos_in_r_array(j,i)
|
|
aos_vx_alpha_sr_pbe_w(j,i,istate) = vx_rho_a * aos_in_r_array(j,i)
|
|
aos_vx_beta_sr_pbe_w (j,i,istate) = vx_rho_b * aos_in_r_array(j,i)
|
|
enddo
|
|
do j = 1, ao_num
|
|
do m = 1,3
|
|
aos_d_vc_alpha_sr_pbe_w(j,i,istate) += contrib_grad_ca(m) * aos_grad_in_r_array_transp(m,j,i)
|
|
aos_d_vc_beta_sr_pbe_w (j,i,istate) += contrib_grad_cb(m) * aos_grad_in_r_array_transp(m,j,i)
|
|
aos_d_vx_alpha_sr_pbe_w(j,i,istate) += contrib_grad_xa(m) * aos_grad_in_r_array_transp(m,j,i)
|
|
aos_d_vx_beta_sr_pbe_w (j,i,istate) += contrib_grad_xb(m) * aos_grad_in_r_array_transp(m,j,i)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, pot_scal_x_alpha_ao_sr_pbe, (ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, pot_scal_c_alpha_ao_sr_pbe, (ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, pot_scal_x_beta_ao_sr_pbe, (ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, pot_scal_c_beta_ao_sr_pbe, (ao_num,ao_num,N_states)]
|
|
implicit none
|
|
! intermediates to compute the sr_pbe potentials
|
|
!
|
|
integer :: istate
|
|
BEGIN_DOC
|
|
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
|
|
END_DOC
|
|
pot_scal_c_alpha_ao_sr_pbe = 0.d0
|
|
pot_scal_x_alpha_ao_sr_pbe = 0.d0
|
|
pot_scal_c_beta_ao_sr_pbe = 0.d0
|
|
pot_scal_x_beta_ao_sr_pbe = 0.d0
|
|
double precision :: wall_1,wall_2
|
|
call wall_time(wall_1)
|
|
do istate = 1, N_states
|
|
! correlation alpha
|
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_vc_alpha_sr_pbe_w(1,1,istate),size(aos_vc_alpha_sr_pbe_w,1), &
|
|
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
|
pot_scal_c_alpha_ao_sr_pbe(1,1,istate),size(pot_scal_c_alpha_ao_sr_pbe,1))
|
|
! correlation beta
|
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_vc_beta_sr_pbe_w(1,1,istate),size(aos_vc_beta_sr_pbe_w,1), &
|
|
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
|
pot_scal_c_beta_ao_sr_pbe(1,1,istate),size(pot_scal_c_beta_ao_sr_pbe,1))
|
|
! exchange alpha
|
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_vx_alpha_sr_pbe_w(1,1,istate),size(aos_vx_alpha_sr_pbe_w,1), &
|
|
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
|
pot_scal_x_alpha_ao_sr_pbe(1,1,istate),size(pot_scal_x_alpha_ao_sr_pbe,1))
|
|
! exchange beta
|
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_vx_beta_sr_pbe_w(1,1,istate),size(aos_vx_beta_sr_pbe_w,1), &
|
|
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
|
pot_scal_x_beta_ao_sr_pbe(1,1,istate), size(pot_scal_x_beta_ao_sr_pbe,1))
|
|
|
|
enddo
|
|
call wall_time(wall_2)
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, pot_grad_x_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, pot_grad_x_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, pot_grad_c_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, pot_grad_c_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals
|
|
END_DOC
|
|
integer :: istate
|
|
double precision :: wall_1,wall_2
|
|
call wall_time(wall_1)
|
|
pot_grad_c_alpha_ao_sr_pbe = 0.d0
|
|
pot_grad_x_alpha_ao_sr_pbe = 0.d0
|
|
pot_grad_c_beta_ao_sr_pbe = 0.d0
|
|
pot_grad_x_beta_ao_sr_pbe = 0.d0
|
|
do istate = 1, N_states
|
|
! correlation alpha
|
|
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_d_vc_alpha_sr_pbe_w(1,1,istate),size(aos_d_vc_alpha_sr_pbe_w,1), &
|
|
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
|
pot_grad_c_alpha_ao_sr_pbe(1,1,istate),size(pot_grad_c_alpha_ao_sr_pbe,1))
|
|
! correlation beta
|
|
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_d_vc_beta_sr_pbe_w(1,1,istate),size(aos_d_vc_beta_sr_pbe_w,1), &
|
|
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
|
pot_grad_c_beta_ao_sr_pbe(1,1,istate),size(pot_grad_c_beta_ao_sr_pbe,1))
|
|
! exchange alpha
|
|
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_d_vx_alpha_sr_pbe_w(1,1,istate),size(aos_d_vx_alpha_sr_pbe_w,1), &
|
|
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
|
pot_grad_x_alpha_ao_sr_pbe(1,1,istate),size(pot_grad_x_alpha_ao_sr_pbe,1))
|
|
! exchange beta
|
|
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_d_vx_beta_sr_pbe_w(1,1,istate),size(aos_d_vx_beta_sr_pbe_w,1), &
|
|
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
|
pot_grad_x_beta_ao_sr_pbe(1,1,istate),size(pot_grad_x_beta_ao_sr_pbe,1))
|
|
enddo
|
|
|
|
call wall_time(wall_2)
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER[double precision, aos_vxc_alpha_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_vxc_beta_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_d_vxc_alpha_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_d_vxc_beta_sr_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! aos_vxc_alpha_sr_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
|
END_DOC
|
|
integer :: istate,i,j,m
|
|
double precision :: mu,weight
|
|
double precision :: ex, ec
|
|
double precision :: rho_a,rho_b,grad_rho_a(3),grad_rho_b(3),grad_rho_a_2,grad_rho_b_2,grad_rho_a_b
|
|
double precision :: contrib_grad_xa(3),contrib_grad_xb(3),contrib_grad_ca(3),contrib_grad_cb(3)
|
|
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
|
|
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
|
|
|
|
aos_d_vxc_alpha_sr_pbe_w = 0.d0
|
|
aos_d_vxc_beta_sr_pbe_w = 0.d0
|
|
|
|
do istate = 1, N_states
|
|
do i = 1, n_points_final_grid
|
|
weight = final_weight_at_r_vector(i)
|
|
rho_a = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
|
rho_b = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
|
grad_rho_a(1:3) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
|
grad_rho_b(1:3) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
|
grad_rho_a_2 = 0.d0
|
|
grad_rho_b_2 = 0.d0
|
|
grad_rho_a_b = 0.d0
|
|
do m = 1, 3
|
|
grad_rho_a_2 += grad_rho_a(m) * grad_rho_a(m)
|
|
grad_rho_b_2 += grad_rho_b(m) * grad_rho_b(m)
|
|
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
|
|
enddo
|
|
|
|
! inputs
|
|
call GGA_sr_type_functionals(mu_erf_dft,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
|
vx_rho_a *= weight
|
|
vc_rho_a *= weight
|
|
vx_rho_b *= weight
|
|
vc_rho_b *= weight
|
|
do m= 1,3
|
|
contrib_grad_ca(m) = weight * (2.d0 * vc_grad_rho_a_2 * grad_rho_a(m) + vc_grad_rho_a_b * grad_rho_b(m) )
|
|
contrib_grad_xa(m) = weight * (2.d0 * vx_grad_rho_a_2 * grad_rho_a(m) + vx_grad_rho_a_b * grad_rho_b(m) )
|
|
contrib_grad_cb(m) = weight * (2.d0 * vc_grad_rho_b_2 * grad_rho_b(m) + vc_grad_rho_a_b * grad_rho_a(m) )
|
|
contrib_grad_xb(m) = weight * (2.d0 * vx_grad_rho_b_2 * grad_rho_b(m) + vx_grad_rho_a_b * grad_rho_a(m) )
|
|
enddo
|
|
do j = 1, ao_num
|
|
aos_vxc_alpha_sr_pbe_w(j,i,istate) = ( vc_rho_a + vx_rho_a ) * aos_in_r_array(j,i)
|
|
aos_vxc_beta_sr_pbe_w (j,i,istate) = ( vc_rho_b + vx_rho_b ) * aos_in_r_array(j,i)
|
|
enddo
|
|
do j = 1, ao_num
|
|
do m = 1,3
|
|
aos_d_vxc_alpha_sr_pbe_w(j,i,istate) += ( contrib_grad_ca(m) + contrib_grad_xa(m) ) * aos_grad_in_r_array_transp(m,j,i)
|
|
aos_d_vxc_beta_sr_pbe_w (j,i,istate) += ( contrib_grad_cb(m) + contrib_grad_xb(m) ) * aos_grad_in_r_array_transp(m,j,i)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, pot_scal_xc_alpha_ao_sr_pbe, (ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, pot_scal_xc_beta_ao_sr_pbe, (ao_num,ao_num,N_states)]
|
|
implicit none
|
|
integer :: istate
|
|
BEGIN_DOC
|
|
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
|
|
END_DOC
|
|
pot_scal_xc_alpha_ao_sr_pbe = 0.d0
|
|
pot_scal_xc_beta_ao_sr_pbe = 0.d0
|
|
double precision :: wall_1,wall_2
|
|
call wall_time(wall_1)
|
|
do istate = 1, N_states
|
|
! exchange - correlation alpha
|
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_vxc_alpha_sr_pbe_w(1,1,istate),size(aos_vxc_alpha_sr_pbe_w,1), &
|
|
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
|
pot_scal_xc_alpha_ao_sr_pbe(1,1,istate),size(pot_scal_xc_alpha_ao_sr_pbe,1))
|
|
! exchange - correlation beta
|
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_vxc_beta_sr_pbe_w(1,1,istate),size(aos_vxc_beta_sr_pbe_w,1), &
|
|
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
|
pot_scal_xc_beta_ao_sr_pbe(1,1,istate),size(pot_scal_xc_beta_ao_sr_pbe,1))
|
|
enddo
|
|
call wall_time(wall_2)
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, pot_grad_xc_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, pot_grad_xc_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals
|
|
END_DOC
|
|
integer :: istate
|
|
double precision :: wall_1,wall_2
|
|
call wall_time(wall_1)
|
|
pot_grad_xc_alpha_ao_sr_pbe = 0.d0
|
|
pot_grad_xc_beta_ao_sr_pbe = 0.d0
|
|
do istate = 1, N_states
|
|
! exchange - correlation alpha
|
|
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_d_vxc_alpha_sr_pbe_w(1,1,istate),size(aos_d_vxc_alpha_sr_pbe_w,1), &
|
|
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
|
pot_grad_xc_alpha_ao_sr_pbe(1,1,istate),size(pot_grad_xc_alpha_ao_sr_pbe,1))
|
|
! exchange - correlation beta
|
|
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_d_vxc_beta_sr_pbe_w(1,1,istate),size(aos_d_vxc_beta_sr_pbe_w,1), &
|
|
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
|
pot_grad_xc_beta_ao_sr_pbe(1,1,istate),size(pot_grad_xc_beta_ao_sr_pbe,1))
|
|
enddo
|
|
|
|
call wall_time(wall_2)
|
|
|
|
END_PROVIDER
|
|
|