9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-07 05:53:37 +01:00
qp2/plugins/local/tc_scf/rh_tcscf_diis.irp.f

410 lines
14 KiB
Fortran

! ---
! TODO
! level shift of SCF is well adapted
! for 0.5 x F
!
subroutine rh_tcscf_diis()
implicit none
integer :: i, j, it
integer :: dim_DIIS, index_dim_DIIS
logical :: converged
double precision :: etc_tot, etc_1e, etc_2e, etc_3e, e_save, e_delta
double precision :: tc_grad, g_save, g_delta, g_delta_th
double precision :: level_shift_save, rate_th
double precision :: t0, t1
double precision :: er_DIIS, er_delta, er_save, er_delta_th
double precision, allocatable :: F_DIIS(:,:,:), E_DIIS(:,:,:)
double precision, allocatable :: mo_r_coef_save(:,:), mo_l_coef_save(:,:)
logical, external :: qp_stop
it = 0
e_save = 0.d0
dim_DIIS = 0
g_delta_th = 1d0
er_delta_th = 1d0
rate_th = 0.1d0
allocate(mo_r_coef_save(ao_num,mo_num), mo_l_coef_save(ao_num,mo_num))
mo_l_coef_save = 0.d0
mo_r_coef_save = 0.d0
allocate(F_DIIS(ao_num,ao_num,max_dim_DIIS_TCSCF), E_DIIS(ao_num,ao_num,max_dim_DIIS_TCSCF))
F_DIIS = 0.d0
E_DIIS = 0.d0
call write_time(6)
! ---
PROVIDE level_shift_TCSCF
PROVIDE mo_l_coef mo_r_coef
!write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
! '====', '================', '================', '================', '================', '================' &
! , '================', '================', '================', '====', '========'
!write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
! ' it ', ' SCF TC Energy ', ' E(1e) ', ' E(2e) ', ' E(3e) ', ' energy diff ' &
! , ' gradient ', ' DIIS error ', ' level shift ', 'DIIS', ' WT (m)'
!write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
! '====', '================', '================', '================', '================', '================' &
! , '================', '================', '================', '====', '========'
write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
'====', '================', '================', '================', '================', '================' &
, '================', '================', '====', '========'
write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
' it ', ' SCF TC Energy ', ' E(1e) ', ' E(2e) ', ' E(3e) ', ' energy diff ' &
, ' DIIS error ', ' level shift ', 'DIIS', ' WT (m)'
write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
'====', '================', '================', '================', '================', '================' &
, '================', '================', '====', '========'
! first iteration (HF orbitals)
call wall_time(t0)
etc_tot = TC_HF_energy
etc_1e = TC_HF_one_e_energy
etc_2e = TC_HF_two_e_energy
etc_3e = diag_three_elem_hf
!tc_grad = grad_non_hermit
er_DIIS = maxval(abs(FQS_SQF_mo))
e_delta = dabs(etc_tot - e_save)
e_save = etc_tot
!g_save = tc_grad
er_save = er_DIIS
call wall_time(t1)
!write(6, '(I4,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, I4,1X, F8.2)') &
! it, etc_tot, etc_1e, etc_2e, etc_3e, e_delta, tc_grad, er_DIIS, level_shift_tcscf, dim_DIIS, (t1-t0)/60.d0
write(6, '(I4,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, I4,1X, F8.2)') &
it, etc_tot, etc_1e, etc_2e, etc_3e, e_delta, er_DIIS, level_shift_tcscf, dim_DIIS, (t1-t0)/60.d0
! ---
PROVIDE FQS_SQF_ao Fock_matrix_tc_ao_tot
converged = .false.
!do while((tc_grad .gt. dsqrt(thresh_tcscf)) .and. (er_DIIS .gt. dsqrt(thresh_tcscf)))
do while(.not. converged)
call wall_time(t0)
it += 1
if(it > n_it_TCSCF_max) then
print *, ' max of TCSCF iterations is reached ', n_it_TCSCF_max
stop
endif
dim_DIIS = min(dim_DIIS+1, max_dim_DIIS_TCSCF)
! ---
if(dabs(e_delta) > 1.d-12) then
index_dim_DIIS = mod(dim_DIIS-1, max_dim_DIIS_TCSCF) + 1
do j = 1, ao_num
do i = 1, ao_num
F_DIIS(i,j,index_dim_DIIS) = Fock_matrix_tc_ao_tot(i,j)
E_DIIS(i,j,index_dim_DIIS) = FQS_SQF_ao (i,j)
enddo
enddo
call extrapolate_TC_Fock_matrix(E_DIIS, F_DIIS, Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1), it, dim_DIIS)
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1) &
, Fock_matrix_tc_mo_tot, size(Fock_matrix_tc_mo_tot, 1) )
TOUCH Fock_matrix_tc_mo_tot fock_matrix_tc_diag_mo_tot
endif
! ---
mo_l_coef(1:ao_num,1:mo_num) = fock_tc_leigvec_ao(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = fock_tc_reigvec_ao(1:ao_num,1:mo_num)
!call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
!call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
TOUCH mo_l_coef mo_r_coef
! ---
!g_delta = grad_non_hermit - g_save
er_delta = maxval(abs(FQS_SQF_mo)) - er_save
if((er_delta > rate_th * er_save) .and. (it > 1)) then
Fock_matrix_tc_ao_tot(1:ao_num,1:ao_num) = F_DIIS(1:ao_num,1:ao_num,index_dim_DIIS)
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1) &
, Fock_matrix_tc_mo_tot, size(Fock_matrix_tc_mo_tot, 1) )
TOUCH Fock_matrix_tc_mo_tot fock_matrix_tc_diag_mo_tot
mo_l_coef(1:ao_num,1:mo_num) = fock_tc_leigvec_ao(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = fock_tc_reigvec_ao(1:ao_num,1:mo_num)
!call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
!call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
TOUCH mo_l_coef mo_r_coef
endif
! ---
!g_delta = grad_non_hermit - g_save
er_delta = maxval(abs(FQS_SQF_mo)) - er_save
mo_l_coef_save(1:ao_num,1:mo_num) = mo_l_coef(1:ao_num,1:mo_num)
mo_r_coef_save(1:ao_num,1:mo_num) = mo_r_coef(1:ao_num,1:mo_num)
do while((er_delta > rate_th * er_save) .and. (it > 1))
print *, ' big or bad step '
!print *, g_delta , rate_th * g_save
print *, er_delta, rate_th * er_save
mo_l_coef(1:ao_num,1:mo_num) = mo_l_coef_save(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = mo_r_coef_save(1:ao_num,1:mo_num)
if(level_shift_TCSCF <= .1d0) then
level_shift_TCSCF = 1.d0
else
level_shift_TCSCF = level_shift_TCSCF * 3.0d0
endif
TOUCH mo_l_coef mo_r_coef level_shift_TCSCF
mo_l_coef(1:ao_num,1:mo_num) = fock_tc_leigvec_ao(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = fock_tc_reigvec_ao(1:ao_num,1:mo_num)
!call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
!call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
TOUCH mo_l_coef mo_r_coef
!g_delta = grad_non_hermit - g_save
er_delta = maxval(abs(FQS_SQF_mo)) - er_save
if(level_shift_TCSCF - level_shift_save > 40.d0) then
level_shift_TCSCF = level_shift_save * 4.d0
SOFT_TOUCH level_shift_TCSCF
exit
endif
dim_DIIS = 0
enddo
! ---
level_shift_TCSCF = level_shift_TCSCF * 0.5d0
SOFT_TOUCH level_shift_TCSCF
etc_tot = TC_HF_energy
etc_1e = TC_HF_one_e_energy
etc_2e = TC_HF_two_e_energy
etc_3e = diag_three_elem_hf
!tc_grad = grad_non_hermit
er_DIIS = maxval(abs(FQS_SQF_mo))
e_delta = dabs(etc_tot - e_save)
!g_delta = tc_grad - g_save
er_delta = er_DIIS - er_save
e_save = etc_tot
!g_save = tc_grad
level_shift_save = level_shift_TCSCF
er_save = er_DIIS
!g_delta_th = dabs(tc_grad) ! g_delta)
er_delta_th = dabs(er_DIIS) !er_delta)
converged = er_DIIS .lt. dsqrt(thresh_tcscf)
call wall_time(t1)
!write(6, '(I4,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, I4,1X, F8.2)') &
! it, etc_tot, etc_1e, etc_2e, etc_3e, e_delta, tc_grad, er_DIIS, level_shift_tcscf, dim_DIIS, (t1-t0)/60.d0
write(6, '(I4,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, I4,1X, F8.2)') &
it, etc_tot, etc_1e, etc_2e, etc_3e, e_delta, er_DIIS, level_shift_tcscf, dim_DIIS, (t1-t0)/60.d0
! Write data in JSON file
call lock_io
if (it == 1) then
write(json_unit, json_dict_uopen_fmt)
else
write(json_unit, json_dict_close_uopen_fmt)
endif
write(json_unit, json_int_fmt) ' iteration ', it
write(json_unit, json_real_fmt) ' SCF TC Energy ', etc_tot
write(json_unit, json_real_fmt) ' E(1e) ', etc_1e
write(json_unit, json_real_fmt) ' E(2e) ', etc_2e
write(json_unit, json_real_fmt) ' E(3e) ', etc_3e
write(json_unit, json_real_fmt) ' delta Energy ', e_delta
write(json_unit, json_real_fmt) ' DIIS error ', er_DIIS
write(json_unit, json_real_fmt) ' level_shift ', level_shift_tcscf
write(json_unit, json_int_fmtx) ' DIIS ', dim_DIIS
write(json_unit, json_real_fmt) ' Wall time (min)', (t1-t0)/60.d0
call unlock_io
if(er_delta .lt. 0.d0) then
call ezfio_set_tc_scf_bitc_energy(etc_tot)
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
write(json_unit, json_true_fmt) 'saved'
else
write(json_unit, json_false_fmt) 'saved'
endif
call lock_io
if (converged) then
write(json_unit, json_true_fmtx) 'converged'
else
write(json_unit, json_false_fmtx) 'converged'
endif
call unlock_io
if(qp_stop()) exit
enddo
write(json_unit, json_dict_close_fmtx)
! ---
print *, ' TCSCF DIIS converged !'
!call print_energy_and_mos(good_angles)
call write_time(6)
deallocate(mo_r_coef_save, mo_l_coef_save, F_DIIS, E_DIIS)
call ezfio_set_tc_scf_bitc_energy(TC_HF_energy)
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
end
! ---
subroutine extrapolate_TC_Fock_matrix(E_DIIS, F_DIIS, F_ao, size_F_ao, it, dim_DIIS)
BEGIN_DOC
!
! Compute the extrapolated Fock matrix using the DIIS procedure
!
! e = \sum_i c_i e_i and \sum_i c_i = 1
! ==> lagrange multiplier with L = |e|^2 - \lambda (\sum_i c_i = 1)
!
END_DOC
implicit none
integer, intent(in) :: it, size_F_ao
integer, intent(inout) :: dim_DIIS
double precision, intent(in) :: F_DIIS(ao_num,ao_num,dim_DIIS)
double precision, intent(in) :: E_DIIS(ao_num,ao_num,dim_DIIS)
double precision, intent(inout) :: F_ao(size_F_ao,ao_num)
double precision, allocatable :: B_matrix_DIIS(:,:), X_vector_DIIS(:), C_vector_DIIS(:)
integer :: i, j, k, l, i_DIIS, j_DIIS
integer :: lwork
double precision :: rcond, ferr, berr
integer, allocatable :: iwork(:)
double precision, allocatable :: scratch(:,:)
if(dim_DIIS < 1) then
return
endif
allocate( B_matrix_DIIS(dim_DIIS+1,dim_DIIS+1), X_vector_DIIS(dim_DIIS+1) &
, C_vector_DIIS(dim_DIIS+1), scratch(ao_num,ao_num) )
! Compute the matrices B and X
B_matrix_DIIS(:,:) = 0.d0
do j = 1, dim_DIIS
j_DIIS = min(dim_DIIS, mod(it-j, max_dim_DIIS_TCSCF)+1)
do i = 1, dim_DIIS
i_DIIS = min(dim_DIIS, mod(it-i, max_dim_DIIS_TCSCF)+1)
! Compute product of two errors vectors
do l = 1, ao_num
do k = 1, ao_num
B_matrix_DIIS(i,j) = B_matrix_DIIS(i,j) + E_DIIS(k,l,i_DIIS) * E_DIIS(k,l,j_DIIS)
enddo
enddo
enddo
enddo
! Pad B matrix and build the X matrix
C_vector_DIIS(:) = 0.d0
do i = 1, dim_DIIS
B_matrix_DIIS(i,dim_DIIS+1) = -1.d0
B_matrix_DIIS(dim_DIIS+1,i) = -1.d0
enddo
C_vector_DIIS(dim_DIIS+1) = -1.d0
deallocate(scratch)
! Estimate condition number of B
integer :: info
double precision :: anorm
integer, allocatable :: ipiv(:)
double precision, allocatable :: AF(:,:)
double precision, external :: dlange
lwork = max((dim_DIIS+1)**2, (dim_DIIS+1)*5)
allocate(AF(dim_DIIS+1,dim_DIIS+1))
allocate(ipiv(2*(dim_DIIS+1)), iwork(2*(dim_DIIS+1)) )
allocate(scratch(lwork,1))
scratch(:,1) = 0.d0
anorm = dlange('1', dim_DIIS+1, dim_DIIS+1, B_matrix_DIIS, size(B_matrix_DIIS, 1), scratch(1,1))
AF(:,:) = B_matrix_DIIS(:,:)
call dgetrf(dim_DIIS+1, dim_DIIS+1, AF, size(AF, 1), ipiv, info)
if(info /= 0) then
dim_DIIS = 0
return
endif
call dgecon('1', dim_DIIS+1, AF, size(AF, 1), anorm, rcond, scratch, iwork, info)
if(info /= 0) then
dim_DIIS = 0
return
endif
if(rcond < 1.d-14) then
dim_DIIS = 0
return
endif
! solve the linear system C = B x X
X_vector_DIIS = C_vector_DIIS
call dgesv(dim_DIIS+1, 1, B_matrix_DIIS, size(B_matrix_DIIS, 1), ipiv , X_vector_DIIS, size(X_vector_DIIS, 1), info)
deallocate(scratch, AF, iwork)
if(info < 0) then
stop ' bug in TC-DIIS'
endif
! Compute extrapolated Fock matrix
!$OMP PARALLEL DO PRIVATE(i,j,k) DEFAULT(SHARED) if (ao_num > 200)
do j = 1, ao_num
do i = 1, ao_num
F_ao(i,j) = 0.d0
enddo
do k = 1, dim_DIIS
if(dabs(X_vector_DIIS(k)) < 1.d-10) cycle
do i = 1,ao_num
! FPE here
F_ao(i,j) = F_ao(i,j) + X_vector_DIIS(k) * F_DIIS(i,j,dim_DIIS-k+1)
enddo
enddo
enddo
!$OMP END PARALLEL DO
end
! ---