9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-09-16 12:45:31 +02:00
qp2/src/two_rdm_routines/davidson_like_state_av_2rdm.irp.f

582 lines
21 KiB
Fortran

subroutine orb_range_2_rdm_state_av_openmp(big_array,dim1,norb,list_orb,state_weights,ispin,u_0,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
! if ispin == 1 :: alpha/alpha 2rdm
! == 2 :: beta /beta 2rdm
! == 3 :: alpha/beta 2rdm
! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba))
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
integer, intent(in) :: N_st,sze
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
double precision, intent(in) :: u_0(sze,N_st),state_weights(N_st)
integer :: k
double precision, allocatable :: u_t(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
allocate(u_t(N_st,N_det))
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
enddo
call dtranspose( &
u_0, &
size(u_0, 1), &
u_t, &
size(u_t, 1), &
N_det, N_st)
call orb_range_2_rdm_state_av_openmp_work(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,1,N_det,0,1)
deallocate(u_t)
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
enddo
end
subroutine orb_range_2_rdm_state_av_openmp_work(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
! Computes two-rdm
!
! Default should be 1,N_det,0,1
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
double precision, intent(in) :: u_t(N_st,N_det),state_weights(N_st)
integer :: k
PROVIDE N_int
select case (N_int)
case (1)
call orb_range_2_rdm_state_av_openmp_work_1(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
case (2)
call orb_range_2_rdm_state_av_openmp_work_2(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
case (3)
call orb_range_2_rdm_state_av_openmp_work_3(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
case (4)
call orb_range_2_rdm_state_av_openmp_work_4(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
case default
call orb_range_2_rdm_state_av_openmp_work_N_int(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
end select
end
BEGIN_TEMPLATE
subroutine orb_range_2_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
use omp_lib
implicit none
BEGIN_DOC
! Computes the two rdm for the N_st vectors |u_t>
! if ispin == 1 :: alpha/alpha 2rdm
! == 2 :: beta /beta 2rdm
! == 3 :: alpha/beta 2rdm
! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba))
! The 2rdm will be computed only on the list of orbitals list_orb, which contains norb
! In any cases, the state average weights will be used with an array state_weights
! Default should be 1,N_det,0,1 for istart,iend,ishift,istep
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
double precision, intent(in) :: u_t(N_st,N_det),state_weights(N_st)
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(omp_lock_kind) :: lock_2rdm
integer :: i,j,k,l
integer :: k_a, k_b, l_a, l_b
integer :: krow, kcol
integer :: lrow, lcol
integer(bit_kind) :: spindet($N_int)
integer(bit_kind) :: tmp_det($N_int,2)
integer(bit_kind) :: tmp_det2($N_int,2)
integer(bit_kind) :: tmp_det3($N_int,2)
integer(bit_kind), allocatable :: buffer(:,:)
integer :: n_doubles
integer, allocatable :: doubles(:)
integer, allocatable :: singles_a(:)
integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:)
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
double precision :: c_average
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
integer(bit_kind) :: orb_bitmask($N_int)
integer :: list_orb_reverse(mo_num)
integer, allocatable :: keys(:,:)
double precision, allocatable :: values(:)
integer :: nkeys,sze_buff
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
else
print*,'Wrong parameter for ispin in general_2_rdm_state_av_openmp_work'
print*,'ispin = ',ispin
stop
endif
PROVIDE N_int
call list_to_bitstring( orb_bitmask, list_orb, norb, N_int)
sze_buff = 6 * norb + elec_alpha_num * elec_alpha_num * 60
list_orb_reverse = -1000
do i = 1, norb
list_orb_reverse(list_orb(i)) = i
enddo
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
allocate(idx0(maxab))
do i=1,maxab
idx0(i) = i
enddo
call omp_init_lock(lock_2rdm)
! Prepare the array of all alpha single excitations
! -------------------------------------------------
PROVIDE N_int nthreads_davidson elec_alpha_num
!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) &
!$OMP SHARED(psi_bilinear_matrix_rows, N_det,lock_2rdm,&
!$OMP psi_bilinear_matrix_columns, &
!$OMP psi_det_alpha_unique, psi_det_beta_unique,&
!$OMP n_det_alpha_unique, n_det_beta_unique, N_int,&
!$OMP psi_bilinear_matrix_transp_rows, &
!$OMP psi_bilinear_matrix_transp_columns, &
!$OMP psi_bilinear_matrix_transp_order, N_st, &
!$OMP psi_bilinear_matrix_order_transp_reverse, &
!$OMP psi_bilinear_matrix_columns_loc, &
!$OMP psi_bilinear_matrix_transp_rows_loc,elec_alpha_num, &
!$OMP istart, iend, istep, irp_here,list_orb_reverse, n_states, state_weights, dim1, &
!$OMP ishift, idx0, u_t, maxab, alpha_alpha,beta_beta,alpha_beta,spin_trace,ispin,big_array,sze_buff,orb_bitmask) &
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,c_1, c_2, &
!$OMP lcol, lrow, l_a, l_b, &
!$OMP buffer, doubles, n_doubles, &
!$OMP tmp_det2, idx, l, kcol_prev, &
!$OMP singles_a, n_singles_a, singles_b, &
!$OMP n_singles_b, nkeys, keys, values, c_average)
! Alpha/Beta double excitations
! =============================
nkeys = 0
allocate( keys(4,sze_buff), values(sze_buff))
allocate( buffer($N_int,maxab), &
singles_a(maxab), &
singles_b(maxab), &
doubles(maxab), &
idx(maxab))
kcol_prev=-1
ASSERT (iend <= N_det)
ASSERT (istart > 0)
ASSERT (istep > 0)
!$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
if (kcol /= kcol_prev) then
call get_all_spin_singles_$N_int( &
psi_det_beta_unique, idx0, &
tmp_det(1,2), N_det_beta_unique, &
singles_b, n_singles_b)
endif
kcol_prev = kcol
! Loop over singly excited beta columns
! -------------------------------------
do i=1,n_singles_b
lcol = singles_b(i)
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det)
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
ASSERT (l_a <= N_det)
idx(j) = l_a
l_a = l_a+1
enddo
j = j-1
call get_all_spin_singles_$N_int( &
buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a )
! Loop over alpha singles
! -----------------------
if(alpha_beta.or.spin_trace)then
do k = 1,n_singles_a
l_a = singles_a(k)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
if(alpha_beta)then
! only ONE contribution
if (nkeys+1 .ge. size(values)) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
endif
else if (spin_trace)then
! TWO contributions
if (nkeys+2 .ge. size(values)) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
endif
endif
call orb_range_off_diag_double_to_2_rdm_ab_dm_buffer(tmp_det,tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
enddo
endif
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
enddo
enddo
!$OMP END DO
!$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep
! Single and double alpha exitations
! ===================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
! Initial determinant is at k_b in beta-major representation
! ----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
spindet(1:$N_int) = tmp_det(1:$N_int,1)
! Loop inside the beta column to gather all the connected alphas
lcol = psi_bilinear_matrix_columns(k_a)
l_a = psi_bilinear_matrix_columns_loc(lcol)
do i=1,N_det_alpha_unique
if (l_a > N_det) exit
lcol = psi_bilinear_matrix_columns(l_a)
if (lcol /= kcol) exit
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
idx(i) = l_a
l_a = l_a+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_a, doubles, n_singles_a, n_doubles )
! Compute Hij for all alpha singles
! ----------------------------------
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
do i=1,n_singles_a
l_a = singles_a(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
if(alpha_beta.or.spin_trace.or.alpha_alpha)then
! increment the alpha/beta part for single excitations
if (nkeys+ 2 * elec_alpha_num .ge. sze_buff) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
endif
call orb_range_off_diag_single_to_2_rdm_ab_dm_buffer(tmp_det, tmp_det2,c_average,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
! increment the alpha/alpha part for single excitations
if (nkeys+4 * elec_alpha_num .ge. sze_buff ) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
endif
call orb_range_off_diag_single_to_2_rdm_aa_dm_buffer(tmp_det,tmp_det2,c_average,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
endif
enddo
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
! Compute Hij for all alpha doubles
! ----------------------------------
if(alpha_alpha.or.spin_trace)then
do i=1,n_doubles
l_a = doubles(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
if (nkeys+4 .ge. sze_buff) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
endif
call orb_range_off_diag_double_to_2_rdm_aa_dm_buffer(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
enddo
endif
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
! Single and double beta excitations
! ==================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
spindet(1:$N_int) = tmp_det(1:$N_int,2)
! Initial determinant is at k_b in beta-major representation
! -----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
! Loop inside the alpha row to gather all the connected betas
lrow = psi_bilinear_matrix_transp_rows(k_b)
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
do i=1,N_det_beta_unique
if (l_b > N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l_b)
if (lrow /= krow) exit
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
idx(i) = l_b
l_b = l_b+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_b, doubles, n_singles_b, n_doubles )
! Compute Hij for all beta singles
! ----------------------------------
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
do i=1,n_singles_b
l_b = singles_b(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
l_a = psi_bilinear_matrix_transp_order(l_b)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
if(alpha_beta.or.spin_trace.or.beta_beta)then
! increment the alpha/beta part for single excitations
if (nkeys+2 * elec_alpha_num .ge. sze_buff ) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
endif
call orb_range_off_diag_single_to_2_rdm_ab_dm_buffer(tmp_det, tmp_det2,c_average,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
! increment the beta /beta part for single excitations
if (nkeys+4 * elec_alpha_num .ge. sze_buff) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
endif
call orb_range_off_diag_single_to_2_rdm_bb_dm_buffer(tmp_det, tmp_det2,c_average,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
endif
enddo
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
! Compute Hij for all beta doubles
! ----------------------------------
if(beta_beta.or.spin_trace)then
do i=1,n_doubles
l_b = doubles(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
l_a = psi_bilinear_matrix_transp_order(l_b)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
if (nkeys+4 .ge. sze_buff) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
nkeys = 0
endif
call orb_range_off_diag_double_to_2_rdm_bb_dm_buffer(tmp_det(1,2),psi_det_beta_unique(1, lcol),c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
! print*,'to do orb_range_off_diag_double_to_2_rdm_bb_dm_buffer'
ASSERT (l_a <= N_det)
enddo
endif
! Diagonal contribution
! =====================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
double precision, external :: diag_wee_mat_elem, diag_S_mat_elem
double precision :: c_1(N_states),c_2(N_states)
c_average = 0.d0
do l = 1, N_states
c_1(l) = u_t(l,k_a)
c_average += c_1(l) * c_1(l) * state_weights(l)
enddo
if (nkeys > 0) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
endif
nkeys = 0
call orb_range_diag_to_all_2_rdm_dm_buffer(tmp_det,c_average,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
if (nkeys > 0) then
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
endif
nkeys = 0
end do
!$OMP END DO
deallocate(buffer, singles_a, singles_b, doubles, idx, keys, values)
!$OMP END PARALLEL
end
SUBST [ N_int ]
1;;
2;;
3;;
4;;
N_int;;
END_TEMPLATE
subroutine update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
use omp_lib
implicit none
integer, intent(in) :: nkeys,dim1
integer, intent(in) :: keys(4,nkeys)
double precision, intent(in) :: values(nkeys)
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(omp_lock_kind),intent(inout):: lock_2rdm
integer :: i,h1,h2,p1,p2
call omp_set_lock(lock_2rdm)
do i = 1, nkeys
h1 = keys(1,i)
h2 = keys(2,i)
p1 = keys(3,i)
p2 = keys(4,i)
big_array(h1,h2,p1,p2) += values(i)
enddo
call omp_unset_lock(lock_2rdm)
end