mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-09-16 12:45:31 +02:00
1130 lines
26 KiB
Fortran
1130 lines
26 KiB
Fortran
! Hessian
|
|
|
|
! The hessian of the CI energy with respects to the orbital rotation is :
|
|
! (C-c C-x C-l)
|
|
|
|
! \begin{align*}
|
|
! H_{pq,rs} &= \dfrac{\partial^2 E(x)}{\partial x_{pq}^2} \\
|
|
! &= \mathcal{P}_{pq} \mathcal{P}_{rs} [ \frac{1}{2} \sum_u [\delta_{qr}(h_p^u \gamma_u^s + h_u^s \gamma_p^u)
|
|
! + \delta_{ps}(h_r^u \gamma_u^q + h_u^q \gamma_r^u)]
|
|
! -(h_p^s \gamma_r^q + h_r^q \gamma_p^s) \\
|
|
! &+ \frac{1}{2} \sum_{tuv} [\delta_{qr}(v_{pt}^{uv} \Gamma_{uv}^{st} + v_{uv}^{st} \Gamma_{pt}^{uv})
|
|
! + \delta_{ps}(v_{uv}^{qt} \Gamma_{rt}^{uv} + v_{rt}^{uv}\Gamma_{uv}^{qt})] \\
|
|
! &+ \sum_{uv} (v_{pr}^{uv} \Gamma_{uv}^{qs} + v_{uv}^{qs} \Gamma_{pr}^{uv})
|
|
! - \sum_{tu} (v_{pu}^{st} \Gamma_{rt}^{qu}+v_{pu}^{tr} \Gamma_{tr}^{qu}+v_{rt}^{qu}\Gamma_{pu}^{st} + v_{tr}^{qu}\Gamma_{pu}^{ts})
|
|
! \end{align*}
|
|
! With pq a permutation operator :
|
|
|
|
! \begin{align*}
|
|
! \mathcal{P}_{pq}= 1 - (p \leftrightarrow q)
|
|
! \end{align*}
|
|
! \begin{align*}
|
|
! \mathcal{P}_{pq} \mathcal{P}_{rs} &= (1 - (p \leftrightarrow q))(1 - (r \leftrightarrow s)) \\
|
|
! &= 1 - (p \leftrightarrow q) - (r \leftrightarrow s) + (p \leftrightarrow q, r \leftrightarrow s)
|
|
! \end{align*}
|
|
|
|
! Where p,q,r,s,t,u,v are general spatial orbitals
|
|
! mo_num : the number of molecular orbitals
|
|
! $$h$$ : One electron integrals
|
|
! $$\gamma$$ : One body density matrix (state average in our case)
|
|
! $$v$$ : Two electron integrals
|
|
! $$\Gamma$$ : Two body density matrice (state average in our case)
|
|
|
|
! The hessian is a 4D matrix of size mo_num, p,q,r,s,t,u,v take all the
|
|
! values between 1 and mo_num (1 and mo_num include).
|
|
|
|
! To do that we compute all the pairs (pq,rs)
|
|
|
|
! Source :
|
|
! Seniority-based coupled cluster theory
|
|
! J. Chem. Phys. 141, 244104 (2014); https://doi.org/10.1063/1.4904384
|
|
! Thomas M. Henderson, Ireneusz W. Bulik, Tamar Stein, and Gustavo E. Scuseria
|
|
|
|
! *Compute the hessian of energy with respects to orbital rotations*
|
|
|
|
! Provided:
|
|
! | mo_num | integer | number of MOs |
|
|
! | mo_one_e_integrals(mo_num,mo_num) | double precision | mono-electronic integrals |
|
|
! | one_e_dm_mo(mo_num,mo_num) | double precision | one e- density matrix (state average) |
|
|
! | two_e_dm_mo(mo_num,mo_num,mo_num) | double precision | two e- density matrix (state average) |
|
|
|
|
! Input:
|
|
! | n | integer | mo_num*(mo_num-1)/2 |
|
|
|
|
! Output:
|
|
! | H(n,n) | double precision | Hessian matrix |
|
|
! | h_tmpr(mo_num,mo_num,mo_num,mo_num) | double precision | Complete hessian matrix before the tranformation |
|
|
! | | | in n by n matrix |
|
|
|
|
! Internal:
|
|
! | hessian(mo_num,mo_num,mo_num,mo_num) | double precision | temporary array containing the hessian before |
|
|
! | | | the permutations |
|
|
! | p, q, r, s | integer | indexes of the hessian elements |
|
|
! | t, u, v | integer | indexes for the sums |
|
|
! | pq, rs | integer | indexes for the transformation of the hessian |
|
|
! | | | (4D -> 2D) |
|
|
! | t1,t2,t3 | double precision | t3 = t2 - t1, time to compute the hessian |
|
|
! | t4,t5,t6 | double precision | t6 = t5 - t4, time to compute each element |
|
|
! | tmp_bi_int_3(mo_num,mo_num,mo_num) | double precision | 3 indexes temporary array for the bielectronic integrals |
|
|
! | tmp_2rdm_3(mo_num,mo_num,mo_num) | double precision | 3 indexes temporary array for the 2 body density matrix |
|
|
! | ind_3(mo_num,mo_num,mo_num) | double precision | 3 indexes temporary array for matrix multiplication |
|
|
! | tmp_accu(mo_num,mo_num) | double precision | temporary array |
|
|
! | tmp_accu_sym(mo_num,mo_num) | double precision | temporary array |
|
|
|
|
! Function:
|
|
! | get_two_e_integral | double precision | bielectronic integrals |
|
|
|
|
|
|
subroutine hessian_list_opt(n,m,list,H,h_tmpr)
|
|
use omp_lib
|
|
include 'constants.h'
|
|
|
|
implicit none
|
|
|
|
! Variables
|
|
|
|
! in
|
|
integer, intent(in) :: n,m,list(m)
|
|
|
|
! out
|
|
double precision, intent(out) :: H(n,n),h_tmpr(m,m,m,m)
|
|
|
|
! internal
|
|
double precision, allocatable :: hessian(:,:,:,:)!, h_tmpr(:,:,:,:)
|
|
double precision, allocatable :: H_test(:,:)
|
|
integer :: p,q,tmp_p,tmp_q,tmp_r,tmp_s
|
|
integer :: r,s,t,u,v,k
|
|
integer :: pq,rs
|
|
double precision :: t1,t2,t3,t4,t5,t6
|
|
! H_test : monum**2 by mo_num**2 double precision matrix to debug the H matrix
|
|
|
|
double precision, allocatable :: tmp_bi_int_3(:,:,:), tmp_2rdm_3(:,:,:), ind_3(:,:,:),ind_3_3(:,:,:)
|
|
double precision, allocatable :: tmp_bi_int_3_3(:,:,:), tmp_2rdm_3_3(:,:,:)
|
|
double precision, allocatable :: tmp_accu(:,:), tmp_accu_sym(:,:),tmp_one_e_dm_mo(:,:),tmp_mo_one_e_integrals(:,:)
|
|
|
|
! Function
|
|
double precision :: get_two_e_integral
|
|
|
|
print*,''
|
|
print*,'---hessian---'
|
|
print*,'Use the full hessian'
|
|
|
|
! Allocation of shared arrays
|
|
allocate(hessian(m,m,m,m),tmp_one_e_dm_mo(mo_num,m),tmp_mo_one_e_integrals(mo_num,m))
|
|
|
|
! Calculations
|
|
|
|
! OMP
|
|
call omp_set_max_active_levels(1)
|
|
|
|
!$OMP PARALLEL &
|
|
!$OMP PRIVATE( &
|
|
!$OMP tmp_p,tmp_q,tmp_r,tmp_s,p,q,r,s, tmp_accu, tmp_accu_sym, &
|
|
!$OMP u,v,t, tmp_bi_int_3, tmp_2rdm_3, ind_3, tmp_bi_int_3_3,tmp_2rdm_3_3, ind_3_3 ) &
|
|
!$OMP SHARED(m,list,hessian,h_tmpr,H, mo_num,n, &
|
|
!$OMP mo_one_e_integrals, one_e_dm_mo, &
|
|
!$OMP two_e_dm_mo,mo_integrals_map, &
|
|
!$OMP t1,t2,t3,t4,t5,t6,&
|
|
!$OMP tmp_mo_one_e_integrals,tmp_one_e_dm_mo)&
|
|
!$OMP DEFAULT(NONE)
|
|
|
|
! Allocation of private arrays
|
|
allocate(tmp_bi_int_3(mo_num,mo_num,mo_num))
|
|
allocate(tmp_2rdm_3(mo_num,mo_num,mo_num), ind_3(mo_num,mo_num,mo_num))
|
|
allocate(tmp_accu(m,m), tmp_accu_sym(mo_num,mo_num))
|
|
|
|
! Initialization of the arrays
|
|
|
|
!$OMP MASTER
|
|
do tmp_q = 1, m
|
|
do tmp_p = 1, m
|
|
tmp_accu(tmp_p,tmp_q) = 0d0
|
|
enddo
|
|
enddo
|
|
!$OMP END MASTER
|
|
|
|
!$OMP MASTER
|
|
do tmp_q = 1, m
|
|
do tmp_p = 1, m
|
|
tmp_accu_sym(tmp_p,tmp_q) = 0d0
|
|
enddo
|
|
enddo
|
|
!$OMP END MASTER
|
|
|
|
!$OMP DO
|
|
do tmp_s = 1, m
|
|
do tmp_r = 1, m
|
|
do tmp_q = 1, m
|
|
do tmp_p = 1, m
|
|
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = 0d0
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP MASTER
|
|
CALL wall_TIME(t1)
|
|
!$OMP END MASTER
|
|
|
|
! Line 1, term 1
|
|
|
|
! Without optimization the term 1 of the line 1 is :
|
|
|
|
! do p = 1, mo_num
|
|
! do q = 1, mo_num
|
|
! do r = 1, mo_num
|
|
! do s = 1, mo_num
|
|
|
|
! if (q==r) then
|
|
! do u = 1, mo_num
|
|
|
|
! hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
|
|
! mo_one_e_integrals(u,p) * one_e_dm_mo(u,s) &
|
|
! + mo_one_e_integrals(s,u) * one_e_dm_mo(p,u))
|
|
|
|
! enddo
|
|
! endif
|
|
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
|
|
! We can write the formula as matrix multiplication.
|
|
! $$c_{p,s} = \sum_u a_{p,u} b_{u,s}$$
|
|
|
|
|
|
!$OMP MASTER
|
|
CALL wall_TIME(t4)
|
|
!$OMP END MASTER
|
|
|
|
!$OMP DO
|
|
do tmp_p = 1, m
|
|
p = list(tmp_p)
|
|
do u = 1, mo_num
|
|
tmp_mo_one_e_integrals(u,tmp_p) = mo_one_e_integrals(u,p)
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
!$OMP DO
|
|
do tmp_s = 1, m
|
|
s = list(tmp_s)
|
|
do u = 1, mo_num
|
|
tmp_one_e_dm_mo(u,tmp_s) = one_e_dm_mo(u,s)
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
|
|
call dgemm('T','N', m, m, mo_num, 1d0, tmp_mo_one_e_integrals,&
|
|
size(tmp_mo_one_e_integrals,1), tmp_one_e_dm_mo, size(tmp_one_e_dm_mo,1),&
|
|
0d0, tmp_accu, size(tmp_accu,1))
|
|
|
|
!$OMP DO
|
|
do tmp_s = 1, m
|
|
do tmp_p = 1, m
|
|
|
|
tmp_accu_sym(tmp_p,tmp_s) = 0.5d0 * (tmp_accu(tmp_p,tmp_s) + tmp_accu(tmp_s,tmp_p))
|
|
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
!$OMP DO
|
|
do tmp_s = 1, m
|
|
do tmp_p = 1, m
|
|
do tmp_r = 1, m
|
|
|
|
hessian(tmp_p,tmp_r,tmp_r,tmp_s) = hessian(tmp_p,tmp_r,tmp_r,tmp_s) + tmp_accu_sym(tmp_p,tmp_s)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
!$OMP MASTER
|
|
CALL wall_TIME(t5)
|
|
t6=t5-t4
|
|
print*,'l1 1',t6
|
|
!$OMP END MASTER
|
|
|
|
! Line 1, term 2
|
|
! do p = 1, mo_num
|
|
! do q = 1, mo_num
|
|
! do r = 1, mo_num
|
|
! do s = 1, mo_num
|
|
|
|
! if (p==s) then
|
|
! do u = 1, mo_num
|
|
|
|
! hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
|
|
! mo_one_e_integrals(u,r) * (one_e_dm_mo(u,q) &
|
|
! + mo_one_e_integrals(q,u) * (one_e_dm_mo(r,u))
|
|
! enddo
|
|
! endif
|
|
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
|
|
! We can write the formula as matrix multiplication.
|
|
! $$c_{r,q} = \sum_u a_{r,u} b_{u,q}$$
|
|
|
|
|
|
!$OMP MASTER
|
|
CALL wall_TIME(t4)
|
|
!$OMP END MASTER
|
|
|
|
call dgemm('T','N', m, m, mo_num, 1d0, tmp_mo_one_e_integrals,&
|
|
size(tmp_mo_one_e_integrals,1), tmp_one_e_dm_mo, size(tmp_one_e_dm_mo,1),&
|
|
0d0, tmp_accu, size(tmp_accu,1))
|
|
|
|
!$OMP DO
|
|
do tmp_r = 1, m
|
|
do tmp_q = 1, m
|
|
|
|
tmp_accu_sym(tmp_q,tmp_r) = 0.5d0 * (tmp_accu(tmp_q,tmp_r) + tmp_accu(tmp_r,tmp_q))
|
|
|
|
enddo
|
|
enddo
|
|
!OMP END DO
|
|
|
|
!$OMP DO
|
|
do tmp_r = 1, m
|
|
do tmp_q = 1, m
|
|
do tmp_s = 1, m
|
|
|
|
hessian(tmp_s,tmp_q,tmp_r,tmp_s) = hessian(tmp_s,tmp_q,tmp_r,tmp_s) + tmp_accu_sym(tmp_q,tmp_r)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!OMP END DO
|
|
|
|
!$OMP MASTER
|
|
CALL wall_TIME(t5)
|
|
t6=t5-t4
|
|
print*,'l1 2',t6
|
|
!$OMP END MASTER
|
|
|
|
! Line 1, term 3
|
|
|
|
! Without optimization the third term is :
|
|
|
|
! do p = 1, mo_num
|
|
! do q = 1, mo_num
|
|
! do r = 1, mo_num
|
|
! do s = 1, mo_num
|
|
|
|
! hessian(p,q,r,s) = hessian(p,q,r,s) &
|
|
! - mo_one_e_integrals(s,p) * one_e_dm_mo(r,q) &
|
|
! - mo_one_e_integrals(q,r) * one_e_dm_mo(p,s))
|
|
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
|
|
! We can just re-order the indexes
|
|
|
|
|
|
!$OMP MASTER
|
|
CALL wall_TIME(t4)
|
|
!$OMP END MASTER
|
|
|
|
!$OMP DO
|
|
do tmp_s = 1, m
|
|
s = list(tmp_s)
|
|
do tmp_r = 1, m
|
|
r = list(tmp_r)
|
|
do tmp_q = 1, m
|
|
q = list(tmp_q)
|
|
do tmp_p = 1, m
|
|
p = list(tmp_p)
|
|
|
|
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) &
|
|
- mo_one_e_integrals(s,p) * one_e_dm_mo(r,q)&
|
|
- mo_one_e_integrals(q,r) * one_e_dm_mo(p,s)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
!$OMP MASTER
|
|
CALL wall_TIME(t5)
|
|
t6=t5-t4
|
|
print*,'l1 3',t6
|
|
!$OMP END MASTER
|
|
|
|
! Line 2, term 1
|
|
|
|
! Without optimization the fourth term is :
|
|
|
|
! do p = 1, mo_num
|
|
! do q = 1, mo_num
|
|
! do r = 1, mo_num
|
|
! do s = 1, mo_num
|
|
|
|
! if (q==r) then
|
|
! do t = 1, mo_num
|
|
! do u = 1, mo_num
|
|
! do v = 1, mo_num
|
|
|
|
! hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
|
|
! get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,s,t) &
|
|
! + get_two_e_integral(s,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v))
|
|
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! endif
|
|
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
|
|
! Using bielectronic integral properties :
|
|
! get_two_e_integral(s,t,u,v,mo_integrals_map) =
|
|
! get_two_e_integral(u,v,s,t,mo_integrals_map)
|
|
|
|
! Using the two electron density matrix properties :
|
|
! two_e_dm_mo(p,t,u,v) = two_e_dm_mo(u,v,p,t)
|
|
|
|
! With t on the external loop, using temporary arrays for each t and by
|
|
! taking u,v as one variable a matrix multplication appears.
|
|
! $$c_{p,s} = \sum_{uv} a_{p,uv} b_{uv,s}$$
|
|
|
|
! There is a kroenecker delta $$\delta_{qr}$$, so we juste compute the
|
|
! terms like : hessian(p,r,r,s)
|
|
|
|
|
|
!$OMP MASTER
|
|
call wall_TIME(t4)
|
|
!$OMP END MASTER
|
|
|
|
allocate(tmp_bi_int_3_3(mo_num,mo_num,m), tmp_2rdm_3_3(mo_num,mo_num,m))
|
|
|
|
!$OMP DO
|
|
do t = 1, mo_num
|
|
|
|
do tmp_p = 1, m
|
|
p = list(tmp_p)
|
|
do v = 1, mo_num
|
|
do u = 1, mo_num
|
|
|
|
tmp_bi_int_3_3(u,v,tmp_p) = get_two_e_integral(u,v,p,t,mo_integrals_map)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
do tmp_p = 1, m ! error, the p might be replace by a s
|
|
! it's a temporary array, the result by replacing p and s will be the same
|
|
p = list(tmp_p)
|
|
do v = 1, mo_num
|
|
do u = 1, mo_num
|
|
|
|
tmp_2rdm_3_3(u,v,tmp_p) = two_e_dm_mo(u,v,p,t)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
call dgemm('T','N', m, m, mo_num*mo_num, 1.d0, &
|
|
tmp_bi_int_3_3, mo_num*mo_num, tmp_2rdm_3_3, mo_num*mo_num, &
|
|
0.d0, tmp_accu, size(tmp_accu,1))
|
|
|
|
do tmp_p = 1, m
|
|
do tmp_s = 1, m
|
|
|
|
tmp_accu_sym(tmp_s,tmp_p) = 0.5d0 * (tmp_accu(tmp_p,tmp_s)+tmp_accu(tmp_s,tmp_p))
|
|
|
|
enddo
|
|
enddo
|
|
|
|
!$OMP CRITICAL
|
|
do tmp_s = 1, m
|
|
do tmp_r = 1, m
|
|
do tmp_p = 1, m
|
|
|
|
hessian(tmp_p,tmp_r,tmp_r,tmp_s) = hessian(tmp_p,tmp_r,tmp_r,tmp_s) + tmp_accu_sym(tmp_p,tmp_s)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END CRITICAL
|
|
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
!$OMP MASTER
|
|
call wall_TIME(t5)
|
|
t6=t5-t4
|
|
print*,'l2 1', t6
|
|
!$OMP END MASTER
|
|
|
|
! Line 2, term 2
|
|
|
|
! do p = 1, mo_num
|
|
! do q = 1, mo_num
|
|
! do r = 1, mo_num
|
|
! do s = 1, mo_num
|
|
|
|
! if (p==s) then
|
|
! do t = 1, mo_num
|
|
! do u = 1, mo_num
|
|
! do v = 1, mo_num
|
|
|
|
! hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( &
|
|
! get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(r,t,u,v) &
|
|
! + get_two_e_integral(u,v,r,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t))
|
|
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! endif
|
|
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
|
|
! Using the two electron density matrix properties :
|
|
! get_two_e_integral(q,t,u,v,mo_integrals_map) =
|
|
! get_two_e_integral(u,v,q,t,mo_integrals_map)
|
|
|
|
! Using the two electron density matrix properties :
|
|
! two_e_dm_mo(r,t,u,v) = two_e_dm_mo(u,v,r,t)
|
|
|
|
! With t on the external loop, using temporary arrays for each t and by
|
|
! taking u,v as one variable a matrix multplication appears.
|
|
! $$c_{q,r} = \sum_uv a_{q,uv} b_{uv,r}$$
|
|
|
|
! There is a kroenecker delta $$\delta_{ps}$$, so we juste compute the
|
|
! terms like : hessian(s,q,r,s)
|
|
|
|
|
|
!******************************
|
|
! Opt Second line, second term
|
|
!******************************
|
|
|
|
!$OMP MASTER
|
|
CALL wall_TIME(t4)
|
|
!$OMP END MASTER
|
|
|
|
|
|
|
|
!$OMP DO
|
|
do t = 1, mo_num
|
|
|
|
do tmp_q = 1, m
|
|
q = list(tmp_q)
|
|
do v = 1, mo_num
|
|
do u = 1, mo_num
|
|
|
|
tmp_bi_int_3_3(u,v,tmp_q) = get_two_e_integral(u,v,q,t,mo_integrals_map)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
do tmp_r = 1, m
|
|
r = list(tmp_r)
|
|
do v = 1, mo_num
|
|
do u = 1, mo_num
|
|
|
|
tmp_2rdm_3_3(u,v,tmp_r) = two_e_dm_mo(u,v,r,t)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
call dgemm('T','N', m, m, mo_num*mo_num, 1.d0, &
|
|
tmp_bi_int_3_3 , mo_num*mo_num, tmp_2rdm_3_3, mo_num*mo_num, &
|
|
0.d0, tmp_accu, size(tmp_accu,1))
|
|
|
|
do tmp_r = 1, m
|
|
do tmp_q = 1, m
|
|
|
|
tmp_accu_sym(tmp_q,tmp_r) = 0.5d0 * (tmp_accu(tmp_q,tmp_r) + tmp_accu(tmp_r,tmp_q))
|
|
|
|
enddo
|
|
enddo
|
|
|
|
!$OMP CRITICAL
|
|
do tmp_r = 1, m
|
|
do tmp_q = 1, m
|
|
do tmp_s = 1, m
|
|
|
|
hessian(tmp_s,tmp_q,tmp_r,tmp_s) = hessian(tmp_s,tmp_q,tmp_r,tmp_s) + tmp_accu_sym(tmp_q,tmp_r)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END CRITICAL
|
|
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
deallocate(tmp_bi_int_3_3, tmp_2rdm_3_3)
|
|
|
|
!$OMP MASTER
|
|
CALL wall_TIME(t5)
|
|
t6=t5-t4
|
|
print*,'l2 2',t6
|
|
!$OMP END MASTER
|
|
|
|
! Line 3, term 1
|
|
|
|
! do p = 1, mo_num
|
|
! do q = 1, mo_num
|
|
! do r = 1, mo_num
|
|
! do s = 1, mo_num
|
|
|
|
! do u = 1, mo_num
|
|
! do v = 1, mo_num
|
|
|
|
! hessian(p,q,r,s) = hessian(p,q,r,s) &
|
|
! + get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) &
|
|
! + get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v)
|
|
|
|
! enddo
|
|
! enddo
|
|
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
|
|
! Using the two electron density matrix properties :
|
|
! get_two_e_integral(u,v,p,r,mo_integrals_map) =
|
|
! get_two_e_integral(p,r,u,v,mo_integrals_map)
|
|
|
|
! Using the two electron density matrix properties :
|
|
! two_e_dm_mo(u,v,q,s) = two_e_dm_mo(q,s,u,v)
|
|
|
|
! With v on the external loop, using temporary arrays for each v and by
|
|
! taking p,r and q,s as one dimension a matrix multplication
|
|
! appears. $$c_{pr,qs} = \sum_u a_{pr,u} b_{u,qs}$$
|
|
|
|
! Part 1
|
|
|
|
!$OMP MASTER
|
|
call wall_TIME(t4)
|
|
!$OMP END MASTER
|
|
|
|
!--------
|
|
! part 1
|
|
! get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s)
|
|
!--------
|
|
|
|
allocate(tmp_bi_int_3_3(m,m,mo_num), tmp_2rdm_3_3(mo_num,m,m),ind_3_3(m,m,m))
|
|
|
|
!$OMP DO
|
|
do v = 1, mo_num
|
|
|
|
do u = 1, mo_num
|
|
do tmp_r = 1, m
|
|
r = list(tmp_r)
|
|
do tmp_p = 1, m
|
|
p = list(tmp_p)
|
|
|
|
tmp_bi_int_3_3(tmp_p,tmp_r,u) = get_two_e_integral(p,r,u,v,mo_integrals_map)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
do tmp_s = 1, m
|
|
s = list(tmp_s)
|
|
do tmp_q = 1, m
|
|
q = list(tmp_q)
|
|
do u = 1, mo_num
|
|
|
|
tmp_2rdm_3_3(u,tmp_q,tmp_s) = two_e_dm_mo(q,s,u,v)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
do tmp_s = 1, m
|
|
|
|
call dgemm('N','N',m*m, m, mo_num, 1d0, tmp_bi_int_3_3,&
|
|
size(tmp_bi_int_3_3,1)*size(tmp_bi_int_3_3,2), tmp_2rdm_3_3(1,1,tmp_s),&
|
|
mo_num, 0d0, ind_3_3, size(ind_3_3,1) * size(ind_3_3,2))
|
|
|
|
!$OMP CRITICAL
|
|
do tmp_r = 1, m
|
|
do tmp_q = 1, m
|
|
do tmp_p = 1, m
|
|
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + ind_3_3(tmp_p,tmp_r,tmp_q)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END CRITICAL
|
|
|
|
enddo
|
|
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
deallocate(tmp_bi_int_3_3, tmp_2rdm_3_3,ind_3_3)
|
|
|
|
|
|
|
|
! With v on the external loop, using temporary arrays for each v and by
|
|
! taking q,s and p,r as one dimension a matrix multplication
|
|
! appears. $$c_{qs,pr} = \sum_u a_{qs,u}*b_{u,pr}$$
|
|
|
|
! Part 2
|
|
|
|
!--------
|
|
! part 2
|
|
! get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v)
|
|
!--------
|
|
|
|
allocate(tmp_bi_int_3_3(m,m,mo_num), tmp_2rdm_3_3(mo_num,m,m),ind_3_3(m,m,m))
|
|
|
|
!$OMP DO
|
|
do v = 1, mo_num
|
|
|
|
do u = 1, mo_num
|
|
do tmp_s = 1, m
|
|
s = list(tmp_s)
|
|
do tmp_q = 1, m
|
|
q = list(tmp_q)
|
|
|
|
tmp_bi_int_3_3(tmp_q,tmp_s,u) = get_two_e_integral(q,s,u,v,mo_integrals_map)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
do tmp_r = 1, m
|
|
r = list(tmp_r)
|
|
do tmp_p = 1, m
|
|
p = list(tmp_p)
|
|
do u = 1, mo_num
|
|
|
|
tmp_2rdm_3_3(u,tmp_p,tmp_r) = two_e_dm_mo(p,r,u,v)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
do tmp_r = 1, m
|
|
|
|
call dgemm('N','N', m*m, m, mo_num, 1d0, tmp_bi_int_3_3,&
|
|
size(tmp_bi_int_3_3,1)*size(tmp_bi_int_3_3,2), tmp_2rdm_3_3(1,1,tmp_r),&
|
|
mo_num, 0d0, ind_3_3, size(ind_3_3,1) * size(ind_3_3,2))
|
|
|
|
!$OMP CRITICAL
|
|
do tmp_s = 1, m
|
|
s = list(tmp_s)
|
|
do tmp_q = 1, m
|
|
q = list(tmp_q)
|
|
do tmp_p = 1, m
|
|
p = list(tmp_p)
|
|
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + ind_3_3(tmp_q,tmp_s,tmp_p)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END CRITICAL
|
|
|
|
enddo
|
|
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
deallocate(tmp_bi_int_3_3, tmp_2rdm_3_3,ind_3_3)
|
|
|
|
!$OMP MASTER
|
|
call wall_TIME(t5)
|
|
t6 = t5 - t4
|
|
print*,'l3 1', t6
|
|
!$OMP END MASTER
|
|
|
|
! Line 3, term 2
|
|
|
|
! do p = 1, mo_num
|
|
! do q = 1, mo_num
|
|
! do r = 1, mo_num
|
|
! do s = 1, mo_num
|
|
|
|
! do t = 1, mo_num
|
|
! do u = 1, mo_num
|
|
|
|
! hessian(p,q,r,s) = hessian(p,q,r,s) &
|
|
! - get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) &
|
|
! - get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) &
|
|
! - get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) &
|
|
! - get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)
|
|
|
|
! enddo
|
|
! enddo
|
|
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
|
|
! With q on the external loop, using temporary arrays for each p and q,
|
|
! and taking u,v as one variable, a matrix multiplication appears:
|
|
! $$c_{r,s} = \sum_{ut} a_{r,ut} b_{ut,s}$$
|
|
|
|
! Part 1
|
|
|
|
!--------
|
|
! Part 1
|
|
! - get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u)
|
|
!--------
|
|
|
|
!$OMP MASTER
|
|
CALL wall_TIME(t4)
|
|
!$OMP END MASTER
|
|
|
|
allocate(tmp_bi_int_3_3(mo_num,mo_num,m), tmp_2rdm_3_3(mo_num,mo_num,m))
|
|
|
|
!$OMP DO
|
|
do tmp_q = 1, m
|
|
q = list(tmp_q)
|
|
|
|
do tmp_r = 1, m
|
|
r = list(tmp_r)
|
|
do t = 1, mo_num
|
|
do u = 1, mo_num
|
|
|
|
tmp_2rdm_3_3(u,t,tmp_r) = two_e_dm_mo(q,u,r,t)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
do tmp_p = 1, m
|
|
p = list(tmp_p)
|
|
|
|
do tmp_s = 1, m
|
|
s = list(tmp_s)
|
|
do t = 1, mo_num
|
|
do u = 1, mo_num
|
|
|
|
tmp_bi_int_3_3(u,t,tmp_s) = - get_two_e_integral(u,s,t,p,mo_integrals_map)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
call dgemm('T','N', m, m, mo_num*mo_num, 1d0, tmp_bi_int_3_3,&
|
|
mo_num*mo_num, tmp_2rdm_3_3, mo_num*mo_num, 0d0, tmp_accu, m)
|
|
|
|
!$OMP CRITICAL
|
|
do tmp_s = 1, m
|
|
do tmp_r = 1, m
|
|
|
|
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + tmp_accu(tmp_s,tmp_r)
|
|
|
|
enddo
|
|
enddo
|
|
!$OMP END CRITICAL
|
|
|
|
enddo
|
|
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
deallocate(tmp_bi_int_3_3, tmp_2rdm_3_3)
|
|
|
|
|
|
|
|
! With q on the external loop, using temporary arrays for each p and q,
|
|
! and taking u,v as one variable, a matrix multiplication appears:
|
|
! $$c_{r,s} = \sum_{ut} a_{r,ut} b_{ut,s}$$
|
|
|
|
! Part 2
|
|
|
|
!--------
|
|
! Part 2
|
|
!- get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u)
|
|
!--------
|
|
|
|
allocate(tmp_bi_int_3_3(mo_num,mo_num,m), tmp_2rdm_3_3(mo_num,mo_num,m))
|
|
|
|
!$OMP DO
|
|
do tmp_q = 1, m
|
|
q = list(tmp_q)
|
|
|
|
do tmp_r = 1, m
|
|
r = list(tmp_r)
|
|
do t = 1, mo_num
|
|
do u = 1, mo_num
|
|
|
|
tmp_2rdm_3_3(u,t,tmp_r) = two_e_dm_mo(q,u,t,r)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
do tmp_p = 1, m
|
|
p = list(tmp_p)
|
|
|
|
do tmp_s = 1, m
|
|
s = list(tmp_s)
|
|
do t = 1, mo_num
|
|
do u = 1, mo_num
|
|
|
|
tmp_bi_int_3_3(u,t,tmp_s) = - get_two_e_integral(u,t,s,p,mo_integrals_map)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
call dgemm('T','N', m, m, mo_num*mo_num, 1d0, tmp_bi_int_3_3,&
|
|
mo_num*mo_num, tmp_2rdm_3_3, mo_num*mo_num, 0d0, tmp_accu, m)
|
|
|
|
!$OMP CRITICAL
|
|
do tmp_s = 1, m
|
|
do tmp_r = 1, m
|
|
|
|
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + tmp_accu(tmp_s,tmp_r)
|
|
|
|
enddo
|
|
enddo
|
|
!$OMP END CRITICAL
|
|
|
|
enddo
|
|
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
deallocate(tmp_bi_int_3_3, tmp_2rdm_3_3)
|
|
|
|
|
|
|
|
! With q on the external loop, using temporary arrays for each p and q,
|
|
! and taking u,v as one variable, a matrix multiplication appears:
|
|
! $$c_{r,s} = \sum_{ut} a_{r,ut} b_{ut,s}$$
|
|
|
|
! Part 3
|
|
|
|
!--------
|
|
! Part 3
|
|
!- get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t)
|
|
!--------
|
|
|
|
allocate(tmp_bi_int_3_3(mo_num,mo_num,m), tmp_2rdm_3_3(mo_num,mo_num,m))
|
|
|
|
!$OMP DO
|
|
do tmp_q = 1, m
|
|
q = list(tmp_q)
|
|
|
|
do tmp_r = 1, m
|
|
r = list(tmp_r)
|
|
do t = 1, mo_num
|
|
do u = 1, mo_num
|
|
|
|
tmp_bi_int_3_3(u,t,tmp_r) = - get_two_e_integral(u,q,t,r,mo_integrals_map)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
do tmp_p = 1, m
|
|
p = list(tmp_p)
|
|
|
|
do tmp_s = 1, m
|
|
s = list(tmp_s)
|
|
do t = 1, mo_num
|
|
do u = 1, mo_num
|
|
|
|
tmp_2rdm_3_3(u,t,tmp_s) = two_e_dm_mo(p,u,s,t)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
call dgemm('T','N', m, m, mo_num*mo_num, 1d0, tmp_2rdm_3_3,&
|
|
mo_num*mo_num, tmp_bi_int_3_3, mo_num*mo_num, 0d0, tmp_accu, m)
|
|
|
|
!$OMP CRITICAL
|
|
do tmp_s = 1, m
|
|
do tmp_r = 1, m
|
|
|
|
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + tmp_accu(tmp_s,tmp_r)
|
|
|
|
enddo
|
|
enddo
|
|
!$OMP END CRITICAL
|
|
|
|
enddo
|
|
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
deallocate(tmp_bi_int_3_3, tmp_2rdm_3_3)
|
|
|
|
|
|
|
|
! With q on the external loop, using temporary arrays for each p and q,
|
|
! and taking u,v as one variable, a matrix multiplication appears:
|
|
! $$c_{r,s} = \sum_{ut} a_{r,ut} b_{ut,s}$$
|
|
|
|
! Part 4
|
|
|
|
!--------
|
|
! Part 4
|
|
! - get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)
|
|
!--------
|
|
|
|
allocate(tmp_bi_int_3_3(mo_num,mo_num,m), tmp_2rdm_3_3(mo_num,mo_num,m))
|
|
|
|
!$OMP DO
|
|
do tmp_q = 1, m
|
|
q = list(tmp_q)
|
|
|
|
do tmp_r = 1, m
|
|
r = list(tmp_r)
|
|
do t = 1, mo_num
|
|
do u = 1, mo_num
|
|
|
|
tmp_bi_int_3_3(u,t,tmp_r) = - get_two_e_integral(u,t,r,q,mo_integrals_map)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
do tmp_p = 1, m
|
|
p = list(tmp_p)
|
|
|
|
do tmp_s = 1, m
|
|
s = list(tmp_s)
|
|
do t = 1, mo_num
|
|
do u = 1, mo_num
|
|
|
|
tmp_2rdm_3_3(u,t,tmp_s) = two_e_dm_mo(p,u,t,s)
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
call dgemm('T','N', m, m, mo_num*mo_num, 1d0, tmp_2rdm_3_3,&
|
|
mo_num*mo_num, tmp_bi_int_3_3, mo_num*mo_num, 0d0, tmp_accu, m)
|
|
|
|
!$OMP CRITICAL
|
|
do tmp_s = 1, m
|
|
do tmp_r = 1, m
|
|
|
|
hessian(tmp_p,tmp_q,tmp_r,tmp_s) = hessian(tmp_p,tmp_q,tmp_r,tmp_s) + tmp_accu(tmp_s,tmp_r)
|
|
|
|
enddo
|
|
enddo
|
|
!$OMP END CRITICAL
|
|
|
|
enddo
|
|
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
deallocate(tmp_bi_int_3_3, tmp_2rdm_3_3)
|
|
|
|
!$OMP MASTER
|
|
call wall_TIME(t5)
|
|
t6 = t5-t4
|
|
print*,'l3 2',t6
|
|
!$OMP END MASTER
|
|
|
|
!$OMP MASTER
|
|
CALL wall_TIME(t2)
|
|
t3 = t2 -t1
|
|
print*,'Time to compute the hessian : ', t3
|
|
!$OMP END MASTER
|
|
|
|
! Deallocation of private arrays
|
|
! In the omp section !
|
|
|
|
deallocate(tmp_bi_int_3, tmp_2rdm_3, tmp_accu, tmp_accu_sym, ind_3)
|
|
|
|
! Permutations
|
|
! As we mentioned before there are two permutation operator in the
|
|
! formula :
|
|
! Hessian(p,q,r,s) = P_pq P_rs [...]
|
|
! => Hessian(p,q,r,s) = (p,q,r,s) - (q,p,r,s) - (p,q,s,r) + (q,p,s,r)
|
|
|
|
|
|
!$OMP MASTER
|
|
CALL wall_TIME(t4)
|
|
!$OMP END MASTER
|
|
|
|
!$OMP DO
|
|
do s = 1, m
|
|
do r = 1, m
|
|
do q = 1, m
|
|
do p = 1, m
|
|
|
|
h_tmpr(p,q,r,s) = (hessian(p,q,r,s) - hessian(q,p,r,s) - hessian(p,q,s,r) + hessian(q,p,s,r))
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
!$OMP MASTER
|
|
call wall_TIME(t5)
|
|
t6 = t5-t4
|
|
print*,'Time for permutations :',t6
|
|
!$OMP END MASTER
|
|
|
|
! 4D -> 2D matrix
|
|
! We need a 2D matrix for the Newton method's. Since the Hessian is
|
|
! "antisymmetric" : $$H_{pq,rs} = -H_{rs,pq}$$
|
|
! We can write it as a 2D matrix, N by N, with N = mo_num(mo_num-1)/2
|
|
! with p<q and r<s
|
|
|
|
|
|
!$OMP MASTER
|
|
CALL wall_TIME(t4)
|
|
!$OMP END MASTER
|
|
|
|
!$OMP DO
|
|
do rs = 1, n
|
|
call vec_to_mat_index(rs,r,s)
|
|
do pq = 1, n
|
|
call vec_to_mat_index(pq,p,q)
|
|
H(pq,rs) = h_tmpr(p,q,r,s)
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
|
|
!$OMP MASTER
|
|
call wall_TIME(t5)
|
|
t6 = t5-t4
|
|
print*,'4D -> 2D :',t6
|
|
!$OMP END MASTER
|
|
|
|
!$OMP END PARALLEL
|
|
call omp_set_max_active_levels(4)
|
|
|
|
! Display
|
|
if (debug) then
|
|
print*,'2D Hessian matrix'
|
|
do pq = 1, n
|
|
write(*,'(100(F10.5))') H(pq,:)
|
|
enddo
|
|
endif
|
|
|
|
! Deallocation of shared arrays, end
|
|
|
|
deallocate(hessian,tmp_one_e_dm_mo,tmp_mo_one_e_integrals)!,h_tmpr)
|
|
! h_tmpr is intent out in order to debug the subroutine
|
|
! It's why we don't deallocate it
|
|
|
|
print*,'---End hessian---'
|
|
|
|
end subroutine
|