9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-09-10 01:44:46 +02:00
qp2/src/dft_utils_func/on_top_from_ueg.irp.f

197 lines
5.8 KiB
Fortran

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
double precision function correction_to_on_top_from_UEG(mu,r,istate)
implicit none
integer, intent(in) :: istate
double precision, intent(in) :: mu,r(3)
double precision :: rho_a(N_states),rho_b(N_states)
double precision :: g0_UEG_mu_inf, g0_UEG_mu
call dm_dft_alpha_beta_at_r(r,rho_a,rho_b)
correction_to_on_top_from_UEG = g0_UEG_mu_inf(rho_a(istate),rho_b(istate)) / g0_UEG_mu(mu,rho_a(istate),rho_b(istate))
end
double precision function g0_UEG_mu_inf(rho_a,rho_b)
BEGIN_DOC
! Pair distribution function g0(n_alpha,n_beta) of the Colombic UEG
!
! Taken from Eq. (46) P. Gori-Giorgi and A. Savin, Phys. Rev. A 73, 032506 (2006).
END_DOC
implicit none
double precision, intent(in) :: rho_a,rho_b
double precision :: rho,pi,x
double precision :: B, C, D, E, d2, rs, ahd
rho = rho_a+rho_b
pi = 4d0 * datan(1d0)
ahd = -0.36583d0
d2 = 0.7524d0
B = -2d0 * ahd - d2
C = 0.08193d0
D = -0.01277d0
E = 0.001859d0
x = -d2*rs
if (dabs(rho) > 1.d-20) then
rs = (3d0 / (4d0*pi*rho))**(1d0/3d0) ! JT: serious bug fixed 20/03/19
x = -d2*rs
if(dabs(x).lt.50.d0)then
! g0_UEG_mu_inf= 0.5d0 * (1d0- B*rs + C*rs**2 + D*rs**3 + E*rs**4)*dexp(x)
g0_UEG_mu_inf= 0.5d0 * (1d0+ rs* (-B + rs*(C + rs*(D + rs*E))))*dexp(x)
else
g0_UEG_mu_inf= 0.d0
endif
else
g0_UEG_mu_inf= 0.d0
endif
g0_UEG_mu_inf = max(g0_UEG_mu_inf,1.d-14)
end
double precision function g0_UEG_mu(mu,rho_a,rho_b)
implicit none
BEGIN_DOC
! Pair distribution function g0(n_alpha,n_beta) of the UEG interacting with the long range interaction erf(mu r12)/r12
!
! Taken from P. Gori-Giorgi and A. Savin, Phys. Rev. A 73, 032506 (2006).
END_DOC
double precision, intent(in) :: rho_a,rho_b,mu
double precision :: zeta,pi,rho,x,alpha
double precision :: B, C, D, E, d2, rs, ahd, h_func, kf
pi = 4d0 * datan(1d0)
rho = rho_a+rho_b
alpha = (4d0/(9d0*pi))**(1d0/3d0)
ahd = -0.36583d0
d2 = 0.7524d0
B = -2d0 * ahd - d2
C = 0.08193d0
D = -0.01277d0
E = 0.001859d0
if(rho.gt.1.d-20)then
rs = (3d0 / (4d0*pi*rho))**(1d0/3d0) ! JT: serious bug fixed 20/03/19
else
rs = (3d0 / (4d0*pi*1.d-20))**(1d0/3d0)
endif
kf = (alpha*rs)**(-1d0)
zeta = mu / kf
x = -d2*rs*h_func(zeta)/ahd
if(dabs(x).lt.50.d0)then
g0_UEG_mu = (dexp(x)/2d0) * (1d0- B*(h_func(zeta)/ahd)*rs + C*((h_func(zeta)**2d0)/(ahd**2d0))*(rs**2d0) + D*((h_func(zeta)**3d0)/(ahd**3d0))*(rs**3d0) + E*((h_func(zeta)**4d0)/(ahd**4d0))*(rs**4d0) )
else
g0_UEG_mu = 0.d0
endif
end
double precision function h_func(zeta)
implicit none
double precision, intent(in) :: zeta
double precision :: pi
double precision :: a1, a2, b1, b2, b3, ahd, alpha
pi = 4d0 * datan(1d0)
ahd = -0.36583d0
alpha = (4d0/(9d0*pi))**(1d0/3d0)
a1 = -(6d0*alpha/pi)*(1d0-dlog(2d0))
b1 = 1.4919d0
b3 = 1.91528d0
a2 = ahd * b3
b2 = (a1 - (b3*alpha/dsqrt(pi)))/ahd
h_func = (a1*zeta**2d0 + a2*zeta**3d0) / (1d0 + b1*zeta + b2*zeta**2d0 + b3*zeta**3d0)
end
!-------------------------------------------------------------------------------------------------------------------------------------------
subroutine g0_dg0(rho, rho_a, rho_b, g0, dg0drho)
implicit none
BEGIN_DOC
! Give the on-top pair distribution function g0 and its derivative according to rho dg0drho
END_DOC
double precision, intent (in) :: rho, rho_a, rho_b
double precision, intent (out) :: g0, dg0drho
double precision :: pi
double precision :: g0_UEG_mu_inf, dg0drs
double precision :: C1, F1, D1, E1, B1, rs
pi = dacos(-1.d0)
C1 = 0.0819306d0
F1 = 0.752411d0
D1 = -0.0127713d0
E1 = 0.00185898d0
B1 = 0.7317d0 - F1
if(dabs(rho).gt.1.d-20)then
rs = (3.d0 / (4.d0*pi*rho))**(1.d0/3.d0)
else
rs = (3.d0 / (4.d0*pi*1.d-20))**(1.d0/3.d0)
endif
g0 = g0_UEG_mu_inf(rho_a, rho_b)
if(dabs(F1*rs).lt.50.d0)then
dg0drs = 0.5d0*((-B1 + 2.d0*C1*rs + 3.d0*D1*rs**2 + 4.d0*E1*rs**3)-F1*(1.d0 - B1*rs + C1*rs**2 + D1*rs**3 + E1*rs**4))*dexp(-F1*rs)
else
dg0drs = 0.d0
endif
if(dabs(rho).gt.1.d-20)then
dg0drho = -((6.d0*dsqrt(pi)*rho**2)**(-2.d0/3.d0))*dg0drs
else
dg0drho = -((6.d0*dsqrt(pi)*1.d-40)**(-2.d0/3.d0))*dg0drs
endif
end subroutine g0_dg0
subroutine g0_dg0_d2g0(rho, rho_a, rho_b, g0, dg0drho, d2g0drho2)
implicit none
BEGIN_DOC
! Give the on-top pair distribution function g0 second derivative according to rho d2g0drho2
END_DOC
double precision, intent (in) :: rho, rho_a, rho_b
double precision, intent (out) :: g0, dg0drho, d2g0drho2
double precision :: pi
double precision :: g0_UEG_mu_inf, dg0drs, d2g0drs2, d2rsdrho2
double precision :: C1, F1, D1, E1, B1, rs
pi = dacos(-1.d0)
C1 = 0.0819306d0
F1 = 0.752411d0
D1 = -0.0127713d0
E1 = 0.00185898d0
B1 = 0.7317d0 - F1
if(dabs(rho).gt.1.d-20)then
rs = (3.d0 / (4.d0*pi*rho))**(1.d0/3.d0)
else
rs = (3.d0 / (4.d0*pi*1.d-20))**(1.d0/3.d0)
endif
g0 = g0_UEG_mu_inf(rho_a, rho_b)
if(dabs(F1*rs).lt.50.d0)then
dg0drs = 0.5d0*((-B1 + 2.d0*C1*rs + 3.d0*D1*rs**2 + 4.d0*E1*rs**3)-F1*(1.d0 - B1*rs + C1*rs**2 + D1*rs**3 + E1*rs**4))*dexp(-F1*rs)
d2g0drs2 = 0.5d0*((2.d0*C1 + 6.d0*D1*rs + 12*E1*rs**2) - 2.d0*F1*(-B1 + 2.d0*C1*rs + 3.d0*D1*rs**2 + 4.d0*E1*rs**3)&
&+ (F1**2)*(1.d0 - B1*rs + C1*rs**2 + D1*rs**3 + E1*rs**4))*dexp(-F1*rs)
else
dg0drs = 0.d0
d2g0drs2 = 0.d0
endif
if(dabs(rho).gt.1.d-20)then
dg0drho = -((6.d0*dsqrt(pi)*rho**2)**(-2.d0/3.d0))*dg0drs
d2rsdrho2 = -8.d0*dsqrt(pi)*rho*(6.d0*dsqrt(pi)*rho**2)**(-5.d0/3.d0)
d2g0drho2 = dg0drho*d2rsdrho2 -((6.d0*dsqrt(pi)*rho**2)**(-4.d0/3.d0))*d2g0drs2
else
dg0drho = -((6.d0*dsqrt(pi)*1.d-40)**(-2.d0/3.d0))*dg0drs
d2rsdrho2 = -8.d0*dsqrt(pi)*(1.d-20)*(6.d0*dsqrt(pi)*1.d-40)**(-5.d0/3.d0)
d2g0drho2 = dg0drho*d2rsdrho2 - ((6.d0*dsqrt(pi)*1.d-40)**(-4.d0/3.d0))*d2g0drs2
endif
end subroutine g0_dg0