mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-09-20 08:41:46 +02:00
624 lines
19 KiB
Fortran
624 lines
19 KiB
Fortran
BEGIN_PROVIDER [ double precision, one_e_dm_mo_alpha_average, (mo_num,mo_num) ]
|
|
&BEGIN_PROVIDER [ double precision, one_e_dm_mo_beta_average, (mo_num,mo_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! $\alpha$ and $\beta$ one-body density matrix for each state
|
|
END_DOC
|
|
integer :: i
|
|
one_e_dm_mo_alpha_average = 0.d0
|
|
one_e_dm_mo_beta_average = 0.d0
|
|
do i = 1,N_states
|
|
one_e_dm_mo_alpha_average(:,:) += one_e_dm_mo_alpha(:,:,i) * state_average_weight(i)
|
|
one_e_dm_mo_beta_average(:,:) += one_e_dm_mo_beta(:,:,i) * state_average_weight(i)
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, one_e_dm_mo_diff, (mo_num,mo_num,2:N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Difference of the one-body density matrix with respect to the ground state
|
|
END_DOC
|
|
integer :: i,j, istate
|
|
|
|
do istate=2,N_states
|
|
do j=1,mo_num
|
|
do i=1,mo_num
|
|
one_e_dm_mo_diff(i,j,istate) = &
|
|
one_e_dm_mo_alpha(i,j,istate) - one_e_dm_mo_alpha(i,j,1) +&
|
|
one_e_dm_mo_beta (i,j,istate) - one_e_dm_mo_beta (i,j,1)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, one_e_dm_mo_spin_index, (mo_num,mo_num,N_states,2) ]
|
|
implicit none
|
|
integer :: i,j,ispin,istate
|
|
ispin = 1
|
|
do istate = 1, N_states
|
|
do j = 1, mo_num
|
|
do i = 1, mo_num
|
|
one_e_dm_mo_spin_index(i,j,istate,ispin) = one_e_dm_mo_alpha(i,j,istate)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
ispin = 2
|
|
do istate = 1, N_states
|
|
do j = 1, mo_num
|
|
do i = 1, mo_num
|
|
one_e_dm_mo_spin_index(i,j,istate,ispin) = one_e_dm_mo_beta(i,j,istate)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, one_e_dm_dagger_mo_spin_index, (mo_num,mo_num,N_states,2) ]
|
|
implicit none
|
|
integer :: i,j,ispin,istate
|
|
ispin = 1
|
|
do istate = 1, N_states
|
|
do j = 1, mo_num
|
|
one_e_dm_dagger_mo_spin_index(j,j,istate,ispin) = 1 - one_e_dm_mo_alpha(j,j,istate)
|
|
do i = j+1, mo_num
|
|
one_e_dm_dagger_mo_spin_index(i,j,istate,ispin) = -one_e_dm_mo_alpha(i,j,istate)
|
|
one_e_dm_dagger_mo_spin_index(j,i,istate,ispin) = -one_e_dm_mo_alpha(i,j,istate)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
ispin = 2
|
|
do istate = 1, N_states
|
|
do j = 1, mo_num
|
|
one_e_dm_dagger_mo_spin_index(j,j,istate,ispin) = 1 - one_e_dm_mo_beta(j,j,istate)
|
|
do i = j+1, mo_num
|
|
one_e_dm_dagger_mo_spin_index(i,j,istate,ispin) = -one_e_dm_mo_beta(i,j,istate)
|
|
one_e_dm_dagger_mo_spin_index(j,i,istate,ispin) = -one_e_dm_mo_beta(i,j,istate)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, one_e_dm_mo_alpha, (mo_num,mo_num,N_states) ]
|
|
&BEGIN_PROVIDER [ double precision, one_e_dm_mo_beta, (mo_num,mo_num,N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! $\alpha$ and $\beta$ one-body density matrix for each state
|
|
END_DOC
|
|
|
|
integer :: j,k,l,m,k_a,k_b
|
|
integer :: occ(N_int*bit_kind_size,2)
|
|
double precision :: ck, cl, ckl
|
|
double precision :: phase
|
|
integer :: h1,h2,p1,p2,s1,s2, degree
|
|
integer(bit_kind) :: tmp_det(N_int,2), tmp_det2(N_int)
|
|
integer :: exc(0:2,2),n_occ(2)
|
|
double precision, allocatable :: tmp_a(:,:,:), tmp_b(:,:,:)
|
|
integer :: krow, kcol, lrow, lcol
|
|
|
|
PROVIDE psi_det
|
|
|
|
one_e_dm_mo_alpha = 0.d0
|
|
one_e_dm_mo_beta = 0.d0
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
!$OMP PRIVATE(j,k,k_a,k_b,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc,&
|
|
!$OMP tmp_a, tmp_b, n_occ, krow, kcol, lrow, lcol, tmp_det, tmp_det2)&
|
|
!$OMP SHARED(psi_det,psi_coef,N_int,N_states,elec_alpha_num, &
|
|
!$OMP elec_beta_num,one_e_dm_mo_alpha,one_e_dm_mo_beta,N_det,&
|
|
!$OMP mo_num,psi_bilinear_matrix_rows,psi_bilinear_matrix_columns,&
|
|
!$OMP psi_bilinear_matrix_transp_rows, psi_bilinear_matrix_transp_columns,&
|
|
!$OMP psi_bilinear_matrix_order_reverse, psi_det_alpha_unique, psi_det_beta_unique,&
|
|
!$OMP psi_bilinear_matrix_values, psi_bilinear_matrix_transp_values,&
|
|
!$OMP N_det_alpha_unique,N_det_beta_unique,irp_here)
|
|
allocate(tmp_a(mo_num,mo_num,N_states), tmp_b(mo_num,mo_num,N_states) )
|
|
tmp_a = 0.d0
|
|
!$OMP DO SCHEDULE(guided)
|
|
do k_a=1,N_det
|
|
krow = psi_bilinear_matrix_rows(k_a)
|
|
ASSERT (krow <= N_det_alpha_unique)
|
|
|
|
kcol = psi_bilinear_matrix_columns(k_a)
|
|
ASSERT (kcol <= N_det_beta_unique)
|
|
|
|
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
|
|
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol)
|
|
|
|
! Diagonal part
|
|
! -------------
|
|
|
|
call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int)
|
|
do m=1,N_states
|
|
ck = psi_bilinear_matrix_values(k_a,m)*psi_bilinear_matrix_values(k_a,m)
|
|
do l=1,elec_alpha_num
|
|
j = occ(l,1)
|
|
tmp_a(j,j,m) += ck
|
|
enddo
|
|
enddo
|
|
|
|
if (k_a == N_det) cycle
|
|
l = k_a+1
|
|
lrow = psi_bilinear_matrix_rows(l)
|
|
lcol = psi_bilinear_matrix_columns(l)
|
|
! Fix beta determinant, loop over alphas
|
|
do while ( lcol == kcol )
|
|
tmp_det2(:) = psi_det_alpha_unique(:, lrow)
|
|
call get_excitation_degree_spin(tmp_det(1,1),tmp_det2,degree,N_int)
|
|
if (degree == 1) then
|
|
exc = 0
|
|
call get_single_excitation_spin(tmp_det(1,1),tmp_det2,exc,phase,N_int)
|
|
call decode_exc_spin(exc,h1,p1,h2,p2)
|
|
do m=1,N_states
|
|
ckl = psi_bilinear_matrix_values(k_a,m)*psi_bilinear_matrix_values(l,m) * phase
|
|
tmp_a(h1,p1,m) += ckl
|
|
tmp_a(p1,h1,m) += ckl
|
|
enddo
|
|
endif
|
|
l = l+1
|
|
if (l>N_det) exit
|
|
lrow = psi_bilinear_matrix_rows(l)
|
|
lcol = psi_bilinear_matrix_columns(l)
|
|
enddo
|
|
|
|
enddo
|
|
!$OMP END DO NOWAIT
|
|
|
|
!$OMP CRITICAL
|
|
one_e_dm_mo_alpha(:,:,:) = one_e_dm_mo_alpha(:,:,:) + tmp_a(:,:,:)
|
|
!$OMP END CRITICAL
|
|
deallocate(tmp_a)
|
|
|
|
tmp_b = 0.d0
|
|
!$OMP DO SCHEDULE(guided)
|
|
do k_b=1,N_det
|
|
krow = psi_bilinear_matrix_transp_rows(k_b)
|
|
ASSERT (krow <= N_det_alpha_unique)
|
|
|
|
kcol = psi_bilinear_matrix_transp_columns(k_b)
|
|
ASSERT (kcol <= N_det_beta_unique)
|
|
|
|
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
|
|
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol)
|
|
|
|
! Diagonal part
|
|
! -------------
|
|
|
|
call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int)
|
|
do m=1,N_states
|
|
ck = psi_bilinear_matrix_transp_values(k_b,m)*psi_bilinear_matrix_transp_values(k_b,m)
|
|
do l=1,elec_beta_num
|
|
j = occ(l,2)
|
|
tmp_b(j,j,m) += ck
|
|
enddo
|
|
enddo
|
|
|
|
if (k_b == N_det) cycle
|
|
l = k_b+1
|
|
lrow = psi_bilinear_matrix_transp_rows(l)
|
|
lcol = psi_bilinear_matrix_transp_columns(l)
|
|
! Fix beta determinant, loop over alphas
|
|
do while ( lrow == krow )
|
|
tmp_det2(:) = psi_det_beta_unique(:, lcol)
|
|
call get_excitation_degree_spin(tmp_det(1,2),tmp_det2,degree,N_int)
|
|
if (degree == 1) then
|
|
exc = 0
|
|
call get_single_excitation_spin(tmp_det(1,2),tmp_det2,exc,phase,N_int)
|
|
call decode_exc_spin(exc,h1,p1,h2,p2)
|
|
do m=1,N_states
|
|
ckl = psi_bilinear_matrix_transp_values(k_b,m)*psi_bilinear_matrix_transp_values(l,m) * phase
|
|
tmp_b(h1,p1,m) += ckl
|
|
tmp_b(p1,h1,m) += ckl
|
|
enddo
|
|
endif
|
|
l = l+1
|
|
if (l>N_det) exit
|
|
lrow = psi_bilinear_matrix_transp_rows(l)
|
|
lcol = psi_bilinear_matrix_transp_columns(l)
|
|
enddo
|
|
|
|
enddo
|
|
!$OMP END DO NOWAIT
|
|
!$OMP CRITICAL
|
|
one_e_dm_mo_beta(:,:,:) = one_e_dm_mo_beta(:,:,:) + tmp_b(:,:,:)
|
|
!$OMP END CRITICAL
|
|
|
|
deallocate(tmp_b)
|
|
!$OMP END PARALLEL
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, one_e_dm_mo, (mo_num,mo_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! One-body density matrix
|
|
END_DOC
|
|
one_e_dm_mo = one_e_dm_mo_alpha_average + one_e_dm_mo_beta_average
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, one_e_spin_density_mo, (mo_num,mo_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! $\rho(\alpha) - \rho(\beta)$
|
|
END_DOC
|
|
one_e_spin_density_mo = one_e_dm_mo_alpha_average - one_e_dm_mo_beta_average
|
|
END_PROVIDER
|
|
|
|
subroutine set_natural_mos
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Set natural orbitals, obtained by diagonalization of the one-body density matrix
|
|
! in the |MO| basis
|
|
END_DOC
|
|
character*(64) :: label
|
|
double precision, allocatable :: tmp(:,:)
|
|
|
|
label = "Natural"
|
|
integer :: i,j,iorb,jorb
|
|
do i = 1, n_virt_orb
|
|
iorb = list_virt(i)
|
|
do j = 1, n_core_inact_act_orb
|
|
jorb = list_core_inact_act(j)
|
|
enddo
|
|
enddo
|
|
call mo_as_svd_vectors_of_mo_matrix_eig(one_e_dm_mo,size(one_e_dm_mo,1),mo_num,mo_num,mo_occ,label)
|
|
soft_touch mo_occ
|
|
end
|
|
|
|
|
|
subroutine save_natural_mos_canon_label
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Save natural orbitals, obtained by diagonalization of the one-body density matrix in
|
|
! the |MO| basis
|
|
END_DOC
|
|
call set_natural_mos_canon_label
|
|
call nullify_small_elements(ao_num,mo_num,mo_coef,size(mo_coef,1),1.d-10)
|
|
call orthonormalize_mos
|
|
call save_mos
|
|
end
|
|
|
|
subroutine set_natural_mos_canon_label
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Set natural orbitals, obtained by diagonalization of the one-body density matrix
|
|
! in the |MO| basis
|
|
END_DOC
|
|
character*(64) :: label
|
|
double precision, allocatable :: tmp(:,:)
|
|
|
|
label = "Canonical"
|
|
integer :: i,j,iorb,jorb
|
|
do i = 1, n_virt_orb
|
|
iorb = list_virt(i)
|
|
do j = 1, n_core_inact_act_orb
|
|
jorb = list_core_inact_act(j)
|
|
enddo
|
|
enddo
|
|
call mo_as_svd_vectors_of_mo_matrix_eig(one_e_dm_mo,size(one_e_dm_mo,1),mo_num,mo_num,mo_occ,label)
|
|
soft_touch mo_occ
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
subroutine set_natorb_no_ov_rot
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Set natural orbitals, obtained by diagonalization of the one-body density matrix
|
|
! in the |MO| basis
|
|
END_DOC
|
|
character*(64) :: label
|
|
double precision, allocatable :: tmp(:,:)
|
|
allocate(tmp(mo_num, mo_num))
|
|
label = "Natural"
|
|
tmp = one_e_dm_mo
|
|
integer :: i,j,iorb,jorb
|
|
do i = 1, n_virt_orb
|
|
iorb = list_virt(i)
|
|
do j = 1, n_core_inact_act_orb
|
|
jorb = list_core_inact_act(j)
|
|
tmp(iorb, jorb) = 0.d0
|
|
tmp(jorb, iorb) = 0.d0
|
|
enddo
|
|
enddo
|
|
call mo_as_svd_vectors_of_mo_matrix_eig(tmp,size(tmp,1),mo_num,mo_num,mo_occ,label)
|
|
soft_touch mo_occ
|
|
end
|
|
|
|
subroutine save_natural_mos_no_ov_rot
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Save natural orbitals, obtained by diagonalization of the one-body density matrix in
|
|
! the |MO| basis
|
|
END_DOC
|
|
call set_natorb_no_ov_rot
|
|
call nullify_small_elements(ao_num,mo_num,mo_coef,size(mo_coef,1),1.d-10)
|
|
call orthonormalize_mos
|
|
call save_mos
|
|
end
|
|
|
|
subroutine save_natural_mos
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Save natural orbitals, obtained by diagonalization of the one-body density matrix in
|
|
! the |MO| basis
|
|
END_DOC
|
|
call set_natural_mos
|
|
call nullify_small_elements(ao_num,mo_num,mo_coef,size(mo_coef,1),1.d-10)
|
|
call orthonormalize_mos
|
|
call save_mos
|
|
end
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, c0_weight, (N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Weight of the states in the selection : $\frac{1}{c_0^2}$.
|
|
END_DOC
|
|
if (N_states > 1) then
|
|
integer :: i
|
|
double precision :: c
|
|
do i=1,N_states
|
|
c0_weight(i) = 1.d-31
|
|
c = maxval(psi_coef(:,i) * psi_coef(:,i))
|
|
c0_weight(i) = 1.d0/(c+1.d-20)
|
|
enddo
|
|
c = 1.d0/sum(c0_weight(:))
|
|
do i=1,N_states
|
|
c0_weight(i) = c0_weight(i) * c
|
|
enddo
|
|
else
|
|
c0_weight(:) = 1.d0
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, state_average_weight, (N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Weights in the state-average calculation of the density matrix
|
|
END_DOC
|
|
logical :: exists
|
|
|
|
state_average_weight(:) = 1.d0
|
|
if (weight_one_e_dm == 0) then
|
|
state_average_weight(:) = c0_weight(:)
|
|
else if (weight_one_e_dm == 1) then
|
|
state_average_weight(:) = 1.d0/N_states
|
|
else
|
|
call ezfio_has_determinants_state_average_weight(exists)
|
|
if (exists) then
|
|
call ezfio_get_determinants_state_average_weight(state_average_weight)
|
|
endif
|
|
endif
|
|
state_average_weight(:) = state_average_weight(:)+1.d-31
|
|
state_average_weight(:) = state_average_weight(:)/(sum(state_average_weight(:)))
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, one_e_spin_density_ao, (ao_num,ao_num) ]
|
|
BEGIN_DOC
|
|
! One body spin density matrix on the |AO| basis : $\rho_{AO}(\alpha) - \rho_{AO}(\beta)$
|
|
END_DOC
|
|
implicit none
|
|
integer :: i,j,k,l
|
|
double precision :: dm_mo
|
|
|
|
one_e_spin_density_ao = 0.d0
|
|
do k = 1, ao_num
|
|
do l = 1, ao_num
|
|
do i = 1, mo_num
|
|
do j = 1, mo_num
|
|
dm_mo = one_e_spin_density_mo(j,i)
|
|
! if(dabs(dm_mo).le.1.d-10)cycle
|
|
one_e_spin_density_ao(l,k) += mo_coef(k,i) * mo_coef(l,j) * dm_mo
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, one_e_dm_ao_alpha, (ao_num,ao_num) ]
|
|
&BEGIN_PROVIDER [ double precision, one_e_dm_ao_beta, (ao_num,ao_num) ]
|
|
BEGIN_DOC
|
|
! One body density matrix on the |AO| basis : $\rho_{AO}(\alpha), \rho_{AO}(\beta)$.
|
|
END_DOC
|
|
implicit none
|
|
integer :: i,j,k,l
|
|
double precision :: mo_alpha,mo_beta
|
|
|
|
one_e_dm_ao_alpha = 0.d0
|
|
one_e_dm_ao_beta = 0.d0
|
|
do k = 1, ao_num
|
|
do l = 1, ao_num
|
|
do i = 1, mo_num
|
|
do j = 1, mo_num
|
|
mo_alpha = one_e_dm_mo_alpha_average(j,i)
|
|
mo_beta = one_e_dm_mo_beta_average(j,i)
|
|
! if(dabs(dm_mo).le.1.d-10)cycle
|
|
one_e_dm_ao_alpha(l,k) += mo_coef(k,i) * mo_coef(l,j) * mo_alpha
|
|
one_e_dm_ao_beta(l,k) += mo_coef(k,i) * mo_coef(l,j) * mo_beta
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, one_e_dm_ao_alpha_nstates, (ao_num,ao_num,N_states) ]
|
|
&BEGIN_PROVIDER [ double precision, one_e_dm_ao_beta_nstates, (ao_num,ao_num,N_states) ]
|
|
BEGIN_DOC
|
|
! One body density matrix on the |AO| basis : $\rho_{AO}(\alpha), \rho_{AO}(\beta)$.
|
|
END_DOC
|
|
implicit none
|
|
integer :: i,j,k,l,istate
|
|
double precision :: mo_alpha,mo_beta
|
|
|
|
one_e_dm_ao_alpha_nstates = 0.d0
|
|
one_e_dm_ao_beta_nstates = 0.d0
|
|
do istate = 1, N_states
|
|
do k = 1, ao_num
|
|
do l = 1, ao_num
|
|
do i = 1, mo_num
|
|
do j = 1, mo_num
|
|
mo_alpha = one_e_dm_mo_alpha(j,i,istate)
|
|
mo_beta = one_e_dm_mo_beta(j,i,istate)
|
|
! if(dabs(dm_mo).le.1.d-10)cycle
|
|
one_e_dm_ao_alpha_nstates(l,k,istate) += mo_coef(k,i) * mo_coef(l,j) * mo_alpha
|
|
one_e_dm_ao_beta_nstates(l,k,istate) += mo_coef(k,i) * mo_coef(l,j) * mo_beta
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, one_e_dm_ao, (ao_num, ao_num)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! one_e_dm_ao = one_e_dm_ao_alpha + one_e_dm_ao_beta
|
|
END_DOC
|
|
one_e_dm_ao = one_e_dm_ao_alpha + one_e_dm_ao_beta
|
|
END_PROVIDER
|
|
|
|
|
|
subroutine get_occupation_from_dets(istate,occupation)
|
|
implicit none
|
|
double precision, intent(out) :: occupation(mo_num)
|
|
integer, intent(in) :: istate
|
|
BEGIN_DOC
|
|
! Returns the average occupation of the MOs
|
|
END_DOC
|
|
integer :: i,j, ispin
|
|
integer :: list(N_int*bit_kind_size,2)
|
|
integer :: n_elements(2)
|
|
double precision :: c, norm_2
|
|
ASSERT (istate > 0)
|
|
ASSERT (istate <= N_states)
|
|
|
|
occupation = 0.d0
|
|
double precision, external :: u_dot_u
|
|
|
|
norm_2 = 1.d0/u_dot_u(psi_coef(1,istate),N_det)
|
|
|
|
do i=1,N_det
|
|
c = psi_coef(i,istate)*psi_coef(i,istate)*norm_2
|
|
call bitstring_to_list_ab(psi_det(1,1,i), list, n_elements, N_int)
|
|
do ispin=1,2
|
|
do j=1,n_elements(ispin)
|
|
ASSERT ( list(j,ispin) < mo_num )
|
|
occupation( list(j,ispin) ) += c
|
|
enddo
|
|
enddo
|
|
enddo
|
|
end
|
|
|
|
BEGIN_PROVIDER [double precision, difference_dm, (mo_num, mo_num, N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! difference_dm(i,j,istate) = dm(i,j,1) - dm(i,j,istate)
|
|
END_DOC
|
|
integer :: istate
|
|
do istate = 1, N_states
|
|
difference_dm(:,:,istate) = one_e_dm_mo_alpha(:,:,1) + one_e_dm_mo_beta(:,:,1) &
|
|
- (one_e_dm_mo_alpha(:,:,istate) + one_e_dm_mo_beta(:,:,istate))
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, difference_dm_eigvect, (mo_num, mo_num, N_states) ]
|
|
&BEGIN_PROVIDER [double precision, difference_dm_eigval, (mo_num, N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! eigenvalues and eigevenctors of the difference_dm
|
|
END_DOC
|
|
integer :: istate,i
|
|
do istate = 2, N_states
|
|
call lapack_diag(difference_dm_eigval(1,istate),difference_dm_eigvect(1,1,istate)&
|
|
,difference_dm(1,1,istate),mo_num,mo_num)
|
|
print*,'Eigenvalues of difference_dm for state ',istate
|
|
do i = 1, mo_num
|
|
print*,i,difference_dm_eigval(i,istate)
|
|
enddo
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ integer , n_attachment, (N_states)]
|
|
&BEGIN_PROVIDER [ integer , n_dettachment, (N_states)]
|
|
&BEGIN_PROVIDER [ integer , list_attachment, (mo_num,N_states)]
|
|
&BEGIN_PROVIDER [ integer , list_dettachment, (mo_num,N_states)]
|
|
implicit none
|
|
integer :: i,istate
|
|
integer :: list_attachment_tmp(mo_num)
|
|
n_attachment = 0
|
|
n_dettachment = 0
|
|
do istate = 2, N_states
|
|
do i = 1, mo_num
|
|
if(difference_dm_eigval(i,istate).lt.0.d0)then ! dettachment_orbitals
|
|
n_dettachment(istate) += 1
|
|
list_dettachment(n_dettachment(istate),istate) = i ! they are already sorted
|
|
else
|
|
n_attachment(istate) += 1
|
|
list_attachment_tmp(n_attachment(istate)) = i ! they are not sorted
|
|
endif
|
|
enddo
|
|
! sorting the attachment
|
|
do i = 0, n_attachment(istate) - 1
|
|
list_attachment(i+1,istate) = list_attachment_tmp(n_attachment(istate) - i)
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, attachment_numbers_sorted, (mo_num, N_states)]
|
|
&BEGIN_PROVIDER [ double precision, dettachment_numbers_sorted, (mo_num, N_states)]
|
|
implicit none
|
|
integer :: i,istate
|
|
do istate = 2, N_states
|
|
print*,'dettachment'
|
|
do i = 1, n_dettachment(istate)
|
|
dettachment_numbers_sorted(i,istate) = difference_dm_eigval(list_dettachment(i,istate),istate)
|
|
print*,i,list_dettachment(i,istate),dettachment_numbers_sorted(i,istate)
|
|
enddo
|
|
print*,'attachment'
|
|
do i = 1, n_attachment(istate)
|
|
attachment_numbers_sorted(i,istate) = difference_dm_eigval(list_attachment(i,istate),istate)
|
|
print*,i,list_attachment(i,istate),attachment_numbers_sorted(i,istate)
|
|
enddo
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, attachment_orbitals, (ao_num, mo_num, N_states)]
|
|
&BEGIN_PROVIDER [ double precision, dettachment_orbitals, (ao_num, mo_num, N_states)]
|
|
implicit none
|
|
integer :: i,j,k,istate
|
|
attachment_orbitals = 0.d0
|
|
dettachment_orbitals = 0.d0
|
|
do istate = 2, N_states
|
|
do i = 1, n_dettachment(istate)
|
|
do j = 1, mo_num
|
|
do k = 1, ao_num
|
|
dettachment_orbitals(k,list_dettachment(i,istate),istate) += mo_coef(k,j) * difference_dm_eigvect(j,list_dettachment(i,istate),istate)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
do i = 1, n_attachment(istate)
|
|
do j = 1, mo_num
|
|
do k = 1, ao_num
|
|
attachment_orbitals(k,i,istate) += mo_coef(k,j) * difference_dm_eigvect(j,list_attachment(i,istate),istate)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|