mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-03 18:38:23 +01:00
135 lines
4.8 KiB
Fortran
135 lines
4.8 KiB
Fortran
subroutine give_all_perm_for_three_e(n,l,k,m,j,i,idx_list,phase)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! returns all the list of permutting indices for the antimmetrization of
|
|
!
|
|
! (k^dagger l^dagger n^dagger m j i) <nlk|L|mji> when all indices have the same spins
|
|
!
|
|
! idx_list(:,i) == list of the 6 indices corresponding the permutation "i"
|
|
!
|
|
! phase(i) == phase of the permutation "i"
|
|
!
|
|
! there are in total 6 permutations with different indices
|
|
END_DOC
|
|
integer, intent(in) :: n,l,k,m,j,i
|
|
integer, intent(out) :: idx_list(6,6)
|
|
double precision :: phase(6)
|
|
integer :: list(6)
|
|
!!! CYCLIC PERMUTATIONS
|
|
phase(1:3) = 1.d0
|
|
!!! IDENTITY PERMUTATION
|
|
list = (/n,l,k,m,j,i/)
|
|
idx_list(:,1) = list(:)
|
|
!!! FIRST CYCLIC PERMUTATION
|
|
list = (/n,l,k,j,i,m/)
|
|
idx_list(:,2) = list(:)
|
|
!!! FIRST CYCLIC PERMUTATION
|
|
list = (/n,l,k,i,m,j/)
|
|
idx_list(:,3) = list(:)
|
|
|
|
!!! NON CYCLIC PERMUTATIONS
|
|
phase(1:3) = -1.d0
|
|
!!! PARTICLE 1 is FIXED
|
|
list = (/n,l,k,j,m,i/)
|
|
idx_list(:,4) = list(:)
|
|
!!! PARTICLE 2 is FIXED
|
|
list = (/n,l,k,i,j,m/)
|
|
idx_list(:,5) = list(:)
|
|
!!! PARTICLE 3 is FIXED
|
|
list = (/n,l,k,m,i,j/)
|
|
idx_list(:,6) = list(:)
|
|
|
|
end
|
|
|
|
! ---
|
|
|
|
double precision function sym_3_e_int_from_6_idx_tensor(n, l, k, m, j, i)
|
|
|
|
BEGIN_DOC
|
|
! returns all good combinations of permutations of integrals with the good signs
|
|
!
|
|
! for a given (k^dagger l^dagger n^dagger m j i) <nlk|L|mji> when all indices have the same spins
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer, intent(in) :: n, l, k, m, j, i
|
|
|
|
PROVIDE mo_l_coef mo_r_coef
|
|
|
|
sym_3_e_int_from_6_idx_tensor = three_body_ints_bi_ort(n,l,k,m,j,i) & ! direct
|
|
+ three_body_ints_bi_ort(n,l,k,j,i,m) & ! 1st cyclic permutation
|
|
+ three_body_ints_bi_ort(n,l,k,i,m,j) & ! 2nd cyclic permutation
|
|
- three_body_ints_bi_ort(n,l,k,j,m,i) & ! elec 1 is kept fixed
|
|
- three_body_ints_bi_ort(n,l,k,i,j,m) & ! elec 2 is kept fixed
|
|
- three_body_ints_bi_ort(n,l,k,m,i,j) ! elec 3 is kept fixed
|
|
|
|
return
|
|
end
|
|
|
|
! ---
|
|
|
|
double precision function direct_sym_3_e_int(n,l,k,m,j,i)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! returns all good combinations of permutations of integrals with the good signs
|
|
!
|
|
! for a given (k^dagger l^dagger n^dagger m j i) <nlk|L|mji> when all indices have the same spins
|
|
END_DOC
|
|
integer, intent(in) :: n,l,k,m,j,i
|
|
double precision :: integral
|
|
direct_sym_3_e_int = 0.d0
|
|
call give_integrals_3_body_bi_ort(n,l,k,m,j,i,integral) ! direct
|
|
direct_sym_3_e_int += integral
|
|
call give_integrals_3_body_bi_ort(n,l,k,j,i,m,integral) ! 1st cyclic permutation
|
|
direct_sym_3_e_int += integral
|
|
call give_integrals_3_body_bi_ort(n,l,k,i,m,j,integral) ! 2nd cyclic permutation
|
|
direct_sym_3_e_int += integral
|
|
call give_integrals_3_body_bi_ort(n,l,k,j,m,i,integral) ! elec 1 is kept fixed
|
|
direct_sym_3_e_int += -integral
|
|
call give_integrals_3_body_bi_ort(n,l,k,i,j,m,integral) ! elec 2 is kept fixed
|
|
direct_sym_3_e_int += -integral
|
|
call give_integrals_3_body_bi_ort(n,l,k,m,i,j,integral) ! elec 3 is kept fixed
|
|
direct_sym_3_e_int += -integral
|
|
|
|
end
|
|
|
|
! ---
|
|
|
|
double precision function three_e_diag_parrallel_spin(m, j, i)
|
|
|
|
implicit none
|
|
integer, intent(in) :: i, j, m
|
|
|
|
PROVIDE mo_l_coef mo_r_coef
|
|
|
|
three_e_diag_parrallel_spin = three_e_3_idx_direct_bi_ort(m,j,i) ! direct
|
|
three_e_diag_parrallel_spin += three_e_3_idx_cycle_1_bi_ort(m,j,i) + three_e_3_idx_cycle_2_bi_ort(m,j,i) & ! two cyclic permutations
|
|
- three_e_3_idx_exch23_bi_ort (m,j,i) - three_e_3_idx_exch13_bi_ort(m,j,i) & ! two first exchange
|
|
- three_e_3_idx_exch12_bi_ort (m,j,i) ! last exchange
|
|
|
|
return
|
|
end
|
|
|
|
! ---
|
|
|
|
double precision function three_e_single_parrallel_spin(m,j,k,i)
|
|
implicit none
|
|
integer, intent(in) :: i,k,j,m
|
|
three_e_single_parrallel_spin = three_e_4_idx_direct_bi_ort(m,j,k,i) ! direct
|
|
three_e_single_parrallel_spin += three_e_4_idx_cycle_1_bi_ort(m,j,k,i) + three_e_4_idx_cycle_1_bi_ort(j,m,k,i) & ! two cyclic permutations
|
|
- three_e_4_idx_exch23_bi_ort(m,j,k,i) - three_e_4_idx_exch13_bi_ort(m,j,k,i) & ! two first exchange
|
|
- three_e_4_idx_exch13_bi_ort(j,m,k,i) ! last exchange
|
|
! TODO
|
|
! use transpose
|
|
end
|
|
|
|
double precision function three_e_double_parrallel_spin(m,l,j,k,i)
|
|
implicit none
|
|
integer, intent(in) :: i,k,j,m,l
|
|
three_e_double_parrallel_spin = three_e_5_idx_direct_bi_ort(m,l,j,k,i) ! direct
|
|
three_e_double_parrallel_spin += three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) + three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) & ! two cyclic permutations
|
|
- three_e_5_idx_exch23_bi_ort(m,l,j,k,i) - three_e_5_idx_exch13_bi_ort(m,l,j,k,i) & ! two first exchange
|
|
! - three_e_5_idx_exch12_bi_ort(m,l,j,k,i) ! last exchange
|
|
- three_e_5_idx_direct_bi_ort(m,l,i,k,j) ! last exchange
|
|
end
|