mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-03 10:28:25 +01:00
401 lines
12 KiB
Fortran
401 lines
12 KiB
Fortran
|
|
! ---
|
|
|
|
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_old, (mo_num, mo_num, mo_num, mo_num)]
|
|
|
|
BEGIN_DOC
|
|
! Normal ordering of the three body interaction on the HF density
|
|
END_DOC
|
|
|
|
use bitmasks ! you need to include the bitmasks_module.f90 features
|
|
|
|
implicit none
|
|
|
|
integer :: i, h1, p1, h2, p2
|
|
integer :: hh1, hh2, pp1, pp2
|
|
integer :: Ne(2)
|
|
double precision :: hthree_aba, hthree_aaa, hthree_aab
|
|
double precision :: wall0, wall1
|
|
integer, allocatable :: occ(:,:)
|
|
integer(bit_kind), allocatable :: key_i_core(:,:)
|
|
|
|
print*,' Providing normal_two_body_bi_orth_old ...'
|
|
call wall_time(wall0)
|
|
|
|
PROVIDE N_int
|
|
|
|
if(read_tc_norm_ord) then
|
|
|
|
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/normal_two_body_bi_orth', action="read")
|
|
read(11) normal_two_body_bi_orth_old
|
|
close(11)
|
|
|
|
else
|
|
|
|
PROVIDE N_int
|
|
|
|
allocate( occ(N_int*bit_kind_size,2) )
|
|
allocate( key_i_core(N_int,2) )
|
|
|
|
if(core_tc_op) then
|
|
do i = 1, N_int
|
|
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
|
|
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
|
|
enddo
|
|
call bitstring_to_list_ab(key_i_core,occ,Ne,N_int)
|
|
else
|
|
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
|
|
endif
|
|
|
|
normal_two_body_bi_orth_old = 0.d0
|
|
|
|
!$OMP PARALLEL &
|
|
!$OMP DEFAULT (NONE) &
|
|
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, hthree_aba, hthree_aab, hthree_aaa) &
|
|
!$OMP SHARED (N_int, n_act_orb, list_act, Ne, occ, normal_two_body_bi_orth_old)
|
|
!$OMP DO SCHEDULE (static)
|
|
do hh1 = 1, n_act_orb
|
|
h1 = list_act(hh1)
|
|
do pp1 = 1, n_act_orb
|
|
p1 = list_act(pp1)
|
|
do hh2 = 1, n_act_orb
|
|
h2 = list_act(hh2)
|
|
do pp2 = 1, n_act_orb
|
|
p2 = list_act(pp2)
|
|
! all contributions from the 3-e terms to the double excitations
|
|
! s1:(h1-->p1), s2:(h2-->p2) from the HF reference determinant
|
|
|
|
|
|
! opposite spin double excitations : s1 /= s2
|
|
call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aba)
|
|
|
|
! same spin double excitations : s1 == s2
|
|
if(h1<h2.and.p1.gt.p2)then
|
|
! with opposite spin contributions
|
|
call give_aab_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aab) ! exchange h1<->h2
|
|
! same spin double excitations with same spin contributions
|
|
if(Ne(2).ge.3)then
|
|
call give_aaa_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aaa) ! exchange h1<->h2
|
|
else
|
|
hthree_aaa = 0.d0
|
|
endif
|
|
else
|
|
! with opposite spin contributions
|
|
call give_aab_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aab)
|
|
if(Ne(2).ge.3)then
|
|
! same spin double excitations with same spin contributions
|
|
call give_aaa_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aaa)
|
|
else
|
|
hthree_aaa = 0.d0
|
|
endif
|
|
endif
|
|
|
|
normal_two_body_bi_orth_old(p2,h2,p1,h1) = 0.5d0*(hthree_aba + hthree_aab + hthree_aaa)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
!$OMP END PARALLEL
|
|
|
|
deallocate( occ )
|
|
deallocate( key_i_core )
|
|
endif
|
|
|
|
if(write_tc_norm_ord.and.mpi_master) then
|
|
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/normal_two_body_bi_orth', action="write")
|
|
call ezfio_set_work_empty(.False.)
|
|
write(11) normal_two_body_bi_orth_old
|
|
close(11)
|
|
call ezfio_set_tc_keywords_io_tc_integ('Read')
|
|
endif
|
|
|
|
call wall_time(wall1)
|
|
print*,' Wall time for normal_two_body_bi_orth_old ', wall1-wall0
|
|
|
|
END_PROVIDER
|
|
|
|
! ---
|
|
|
|
subroutine give_aba_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
|
|
|
|
use bitmasks ! you need to include the bitmasks_module.f90 features
|
|
BEGIN_DOC
|
|
! give the contribution for a double excitation of opposite spin BUT averaged over spin
|
|
!
|
|
! it is the average of <p1_down p2_up |h1_down h2_up> and <p1_up p2_down |h1_up h2_down>
|
|
!
|
|
! because the orbitals h1,h2,p1,p2 are spatial orbitals and therefore can be of different spins
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer, intent(in) :: Nint, h1, h2, p1, p2
|
|
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
|
|
double precision, intent(out) :: hthree
|
|
integer :: ii, i
|
|
double precision :: int_direct, int_exc_12, int_exc_13, integral
|
|
|
|
!!!! double alpha/beta
|
|
hthree = 0.d0
|
|
|
|
do ii = 1, Ne(2) ! purely closed shell part
|
|
i = occ(ii,2)
|
|
|
|
call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral)
|
|
int_direct = -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral)
|
|
int_exc_13 = -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral)
|
|
int_exc_12 = -1.d0 * integral
|
|
|
|
hthree += 2.d0 * int_direct - 1.d0 * (int_exc_13 + int_exc_12)
|
|
enddo
|
|
|
|
do ii = Ne(2) + 1, Ne(1) ! purely open-shell part
|
|
i = occ(ii,1)
|
|
|
|
call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral)
|
|
int_direct = -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral)
|
|
int_exc_13 = -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral)
|
|
int_exc_12 = -1.d0 * integral
|
|
|
|
hthree += 1.d0 * int_direct - 0.5d0 * (int_exc_13 + int_exc_12) ! spin average
|
|
! hthree += 1.d0 * int_direct - 1.0d0 * (int_exc_13 + int_exc_12)
|
|
enddo
|
|
|
|
return
|
|
end
|
|
|
|
! ---
|
|
|
|
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_ab, (mo_num, mo_num, mo_num, mo_num)]
|
|
|
|
BEGIN_DOC
|
|
! Normal ordered two-body sector of the three-body terms for opposite spin double excitations
|
|
END_DOC
|
|
|
|
use bitmasks ! you need to include the bitmasks_module.f90 features
|
|
|
|
implicit none
|
|
integer :: h1, p1, h2, p2, i
|
|
integer :: hh1, hh2, pp1, pp2
|
|
integer :: Ne(2)
|
|
integer, allocatable :: occ(:,:)
|
|
integer(bit_kind), allocatable :: key_i_core(:,:)
|
|
double precision :: hthree
|
|
|
|
PROVIDE N_int
|
|
|
|
allocate( key_i_core(N_int,2) )
|
|
allocate( occ(N_int*bit_kind_size,2) )
|
|
|
|
if(core_tc_op) then
|
|
do i = 1, N_int
|
|
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
|
|
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
|
|
enddo
|
|
call bitstring_to_list_ab(key_i_core,occ,Ne,N_int)
|
|
else
|
|
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
|
|
endif
|
|
|
|
normal_two_body_bi_orth_ab = 0.d0
|
|
do hh1 = 1, n_act_orb
|
|
h1 = list_act(hh1)
|
|
do pp1 = 1, n_act_orb
|
|
p1 = list_act(pp1)
|
|
do hh2 = 1, n_act_orb
|
|
h2 = list_act(hh2)
|
|
do pp2 = 1, n_act_orb
|
|
p2 = list_act(pp2)
|
|
call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree)
|
|
|
|
normal_two_body_bi_orth_ab(p2,h2,p1,h1) = hthree
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
deallocate( key_i_core )
|
|
deallocate( occ )
|
|
|
|
END_PROVIDER
|
|
|
|
! ---
|
|
|
|
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_aa_bb, (n_act_orb, n_act_orb, n_act_orb, n_act_orb)]
|
|
|
|
BEGIN_DOC
|
|
! Normal ordered two-body sector of the three-body terms for same spin double excitations
|
|
END_DOC
|
|
|
|
use bitmasks ! you need to include the bitmasks_module.f90 features
|
|
|
|
implicit none
|
|
integer :: i,ii,j,h1,p1,h2,p2
|
|
integer :: hh1,hh2,pp1,pp2
|
|
integer :: Ne(2)
|
|
integer, allocatable :: occ(:,:)
|
|
integer(bit_kind), allocatable :: key_i_core(:,:)
|
|
double precision :: hthree_aab, hthree_aaa
|
|
|
|
PROVIDE N_int
|
|
|
|
allocate( key_i_core(N_int,2) )
|
|
allocate( occ(N_int*bit_kind_size,2) )
|
|
|
|
if(core_tc_op)then
|
|
do i = 1, N_int
|
|
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
|
|
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
|
|
enddo
|
|
call bitstring_to_list_ab(key_i_core, occ, Ne, N_int)
|
|
else
|
|
call bitstring_to_list_ab(ref_bitmask, occ, Ne, N_int)
|
|
endif
|
|
|
|
normal_two_body_bi_orth_aa_bb = 0.d0
|
|
do hh1 = 1, n_act_orb
|
|
h1 = list_act(hh1)
|
|
do pp1 = 1 , n_act_orb
|
|
p1 = list_act(pp1)
|
|
do hh2 = 1, n_act_orb
|
|
h2 = list_act(hh2)
|
|
do pp2 = 1 , n_act_orb
|
|
p2 = list_act(pp2)
|
|
if(h1<h2.and.p1.gt.p2)then
|
|
call give_aab_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aab) ! exchange h1<->h2
|
|
if(Ne(2).ge.3)then
|
|
call give_aaa_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aaa) ! exchange h1<->h2
|
|
else
|
|
hthree_aaa = 0.d0
|
|
endif
|
|
else
|
|
call give_aab_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aab)
|
|
if(Ne(2).ge.3)then
|
|
call give_aaa_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aaa)
|
|
else
|
|
hthree_aaa = 0.d0
|
|
endif
|
|
endif
|
|
normal_two_body_bi_orth_aa_bb(p2,h2,p1,h1) = hthree_aab + hthree_aaa
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
deallocate( key_i_core )
|
|
deallocate( occ )
|
|
|
|
END_PROVIDER
|
|
|
|
! ---
|
|
|
|
subroutine give_aaa_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
|
|
|
|
BEGIN_DOC
|
|
! pure same spin contribution to same spin double excitation s1=h1,p1, s2=h2,p2, with s1==s2
|
|
END_DOC
|
|
|
|
use bitmasks ! you need to include the bitmasks_module.f90 features
|
|
|
|
implicit none
|
|
integer, intent(in) :: Nint, h1, h2, p1, p2
|
|
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
|
|
double precision, intent(out) :: hthree
|
|
integer :: ii,i
|
|
double precision :: int_direct,int_exc_12,int_exc_13,int_exc_23
|
|
double precision :: integral,int_exc_l,int_exc_ll
|
|
|
|
hthree = 0.d0
|
|
do ii = 1, Ne(2) ! purely closed shell part
|
|
i = occ(ii,2)
|
|
|
|
call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral)
|
|
int_direct = -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(p2, p1, i, i, h2, h1, integral)
|
|
int_exc_l = -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(p1, i, p2, i, h2, h1, integral)
|
|
int_exc_ll= -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral)
|
|
int_exc_12= -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral)
|
|
int_exc_13= -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(i, p1, p2, i, h2, h1, integral)
|
|
int_exc_23= -1.d0 * integral
|
|
|
|
hthree += 1.d0 * int_direct + int_exc_l + int_exc_ll - (int_exc_12 + int_exc_13 + int_exc_23)
|
|
enddo
|
|
|
|
do ii = Ne(2)+1,Ne(1) ! purely open-shell part
|
|
i = occ(ii,1)
|
|
|
|
call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral)
|
|
int_direct = -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(p2, p1, i , i, h2, h1, integral)
|
|
int_exc_l = -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(p1, i, p2, i, h2, h1, integral)
|
|
int_exc_ll = -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral)
|
|
int_exc_12 = -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral)
|
|
int_exc_13 = -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(i, p1, p2, i, h2, h1, integral)
|
|
int_exc_23 = -1.d0 * integral
|
|
|
|
!hthree += 1.d0 * int_direct + 0.5d0 * (int_exc_l + int_exc_ll - (int_exc_12 + int_exc_13 + int_exc_23))
|
|
hthree += 0.5d0 * int_direct + 0.5d0 * (int_exc_l + int_exc_ll - (int_exc_12 + int_exc_13 + int_exc_23))
|
|
enddo
|
|
|
|
return
|
|
end
|
|
|
|
! ---
|
|
|
|
subroutine give_aab_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
|
|
|
|
use bitmasks ! you need to include the bitmasks_module.f90 features
|
|
|
|
implicit none
|
|
integer, intent(in) :: Nint, h1, h2, p1, p2
|
|
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
|
|
double precision, intent(out) :: hthree
|
|
integer :: ii, i
|
|
double precision :: int_direct, int_exc_12, int_exc_13, int_exc_23
|
|
double precision :: integral, int_exc_l, int_exc_ll
|
|
|
|
hthree = 0.d0
|
|
do ii = 1, Ne(2) ! purely closed shell part
|
|
i = occ(ii,2)
|
|
|
|
call give_integrals_3_body_bi_ort(p2, p1, i, h2, h1, i, integral)
|
|
int_direct = -1.d0 * integral
|
|
|
|
call give_integrals_3_body_bi_ort(p1, p2, i, h2, h1, i, integral)
|
|
int_exc_23= -1.d0 * integral
|
|
|
|
hthree += 1.d0 * int_direct - int_exc_23
|
|
enddo
|
|
|
|
return
|
|
end
|
|
|
|
! ---
|
|
|