9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-07 19:02:58 +01:00
qp2/plugins/local/mo_localization/org/localization.org

82 KiB
Raw Blame History

Orbital localization

Molecular orbitals localization

Doc

The program localizes the orbitals in function of their mo_class:

  • core MOs
  • inactive MOs
  • active MOs
  • virtual MOs
  • deleted MOs -> no orbital localization

Core MOs are localized with core MOs, inactives MOs are localized with inactives MOs and so on. But deleted orbitals are not localized.

WARNING:

  • The user MUST SPECIFY THE MO CLASSES, otherwise if default mo class is false the localization will be done for all the orbitals between them, so the occupied and virtual MOs will be combined together which is clearly not what we want to do. If default lpmo class is true the localization will be done for the core, occupied and virtual orbitals, but pay attention the mo_class are not deleted after…
  • The mo class is not important (except "deleted") because it is not link to the kind of MOs for CASSCF or CIPSI. It is just a way to separate the MOs in order to localize them separetely, for example to separate the core MOs, the occupied MOs and the virtuals MOs.
  • The user MUST CHANGE THE MO CLASSES AFTER THE LOCALIZATION in order to have the right mo class for his next calculation…

For more information on the mo_class: lpqp set_mo_class -h

Foster-Boys localization

Foster-Boys localization:

  • cite Foster

Boys, S. F., 1960, Rev. Mod. Phys. 32, 296. DOI:https://doi.org/10.1103/RevModPhys.32.300 Boys, S. F., 1966, in Quantum Theory of Atoms, Molecules, and the Solid State, edited by P.-O. Löwdin (Academic Press, New York), p. 253. Daniel A. Kleier, Thomas A. Halgren, John H. Hall Jr., and William

  1. Lipscomb, J. Chem. Phys. 61, 3905 (1974)

doi: 10.1063/1.1681683 Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Comput. Chem. 2013, 34, 1456 1462. DOI: 10.1002/jcc.23281 Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Chem. Theory Comput. 2012, 8, 9, 31373146 DOI: https://doi.org/10.1021/ct300473g Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Chem. Phys. 137, 224114 (2012) DOI: https://doi.org/10.1063/1.4769866 Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David Vanderbilt Rev. Mod. Phys. 84, 1419 https://doi.org/10.1103/RevModPhys.84.1419

The Foster-Boys localization is a method to generate localized MOs (LMOs) by minimizing the Foster-Boys criterion: $$ C_{FB} = \sum_{i=1}^N \left[ < \phi_i | r^2 | \phi_i > - < \phi_i | r | \phi_i >^2 \right] $$. In fact it is equivalent to maximise $$ C_2 = \sum_{i>j, \ i=1}^N \left[ < \phi_i | r | \phi_i > - < \phi_j | r | \phi_j > \left]^2$$ or $$ C_3 = \sum_{i=1}^N \left[ < \phi_i | r | \phi_i > \right]^2.$$

Noting $$A_{ii} = < \phi_i | r^2 | \phi_i > $$ $$B_{ii} = < \phi_i | r | \phi_i > $$

$$ \beta = (B_{pp} - B_{qq})^2 - 4 B_{pq}^2 $$ $$ \gamma = 4 B_{pq} (B_{pp} - B_{qq}) $$

\begin{align*} C_{FB}(\theta) &= \sum_{i=1}^N \left[ A_{ii} - B_{ii}^2 \right] \\ &- \left[ A_{pp} - B_{pp}^2 + A_{qq} - B_{qq}^2 \right] \\ &+ \left[ A_{pp} + A_{qq} - B_{pp}^2 - B_{qq}^2 + \frac{1}{4} [(1-\cos(4\theta) \beta + \sin(4\theta) \gamma] \right] \\ &= C_1(\theta=0) + \frac{1}{4} [(1-\cos(4\theta)) \beta + \sin(4\theta) \gamma] \end{align*}

The derivatives are:

\begin{align*} \frac{\partial C_{FB}(\theta)}{\partial \theta} = \beta \sin(4\theta) + \gamma \cos(4 \theta) \end{align*} \begin{align*} \frac{\partial^2 C_{FB}(\theta)}{\partial \theta^2} = 4 \beta \cos(4\theta) - 4 \gamma \sin(4 \theta) \end{align*}

Similarly:

\begin{align*} C_3(\theta) &= \sum_{i=1}^N [B_{ii}^2] \\ &- B_{pp}^2 - B_{qq}^2 \\ &+ B_{pp}^2 + B_{qq}^2 - \frac{1}{4} [(1-\cos(4\theta) \beta + \sin(4\theta) \gamma] \\ &= C_3(\theta=0) - \frac{1}{4} [(1-\cos(4\theta)) \beta + \sin(4\theta) \gamma] \end{align*}

The derivatives are:

\begin{align*} \frac{\partial C_3(\theta)}{\partial \theta} = - \beta \sin(4\theta) - \gamma \cos(4 \theta) \end{align*} \begin{align*} \frac{\partial^2 C_3(\theta)}{\partial \theta^2} = - 4 \beta \cos(4\theta) + 4 \gamma \sin(4 \theta) \end{align*}

And since we compute the derivatives around $\theta = 0$ (around the actual position) we have:

\begin{align*} \left. \frac{\partial{C_{FB}(\theta)}}{\partial \theta}\right|_{\theta=0} = \gamma \end{align*} \begin{align*} \left. \frac{\partial^2 C_{FB}(\theta)}{\partial \theta^2}\right|_{\theta=0} = 4 \beta \end{align*}

Locality of the orbitals:

  • cite Hoyvik

As the Foster-Boys method tries to minimize the sum of the second moment MO spread, the locality of each MO can be expressed as the second moment of the MO spread. For the MO i, the locality criterion is

\begin{align*} \sigma_i &= \sqrt{ <i|r^2|i> - <i|r|i>^2} \\ &= \sqrt{ <i|x^2|i> - <i|x|i>^2 + <i|y^2|i> - <i|y|i>^2 + <i|z^2|i> - <i|z|i>^2} \end{align*}

Pipek-Mezey localization

-cite pipek mezey 1989

  1. Pipek, P. G. Mezey, J. Chem. Phys. 90, 4916 (1989)

DOI: 10.1063/1.456588

Foster-Boys localization does not preserve the $\sigma - \pi$ separation of the MOs, it leads to "banana" orbitals. The Pipek-Mezey localization normally preserves this separation.

The optimum functional $\mathcal{P}$ is obtained for the maximum of $D^{-1}$

\begin{align*} \mathcal{P} = \sum_{i=1}^n \sum_{A=1}^N \left[ <i|P_A|i> \right]^2 \end{align*}

As for the Foster Boys localization, the change in the functional for the rotation of two MOs can be obtained using very similar terms

\begin{align*} \beta_{st}^{PM} = \sum_{A=1}^N \left( <s|P_A|t>^2 - \frac{1}{4} \left[<s|P_A|s> - <t|P_A|t> \right]^2 \right) \end{align*} \begin{align*} \gamma_{st}^{PM} = \sum_{A=1}^N <s|P_A|t> \left[ <s| P_A |s> - <t|P_A|t> \right] \end{align*}

The matrix element of the operator $P_A$ are obtained using

\begin{align*} <\rho | \tilde{\mu}> = \delta_{\rho \mu} \end{align*}

which leads to

\begin{align*} <s|P_A|t> = \frac{1}{2} \sum_{\rho} \sum_{\mu \in A} \left[ c_{\rho}^{s*} S_{\rho \nu} c_{\mu}^{t} +c_{\mu}^{s*} S_{\mu \rho} c_{\rho}^t \right] \end{align*}

$\sum_{\rho}$ -> sum over all the AOs $\sum_{\mu \in A}$ -> sum over the AOs which belongs to atom A $c^t$ -> expansion coefficient of orbital |t>

So similarly the first and second derivatives are

\begin{align*} \left. \frac{\partial \mathcal{P} (\theta)}{\partial \theta} \right|_{\theta=0}= \gamma^{PM} \end{align*} \begin{align*} \left. \frac{\partial^2 \mathcal{P} (\theta)}{\partial \theta^2}\right|_{\theta=0} = 4 \beta^{PM} \end{align*}

Localization procedure

Localization procedure:

To do the localization we compute the gradient and the diagonal hessian of the Foster-Boys criterion with respect to the MO rotations and we minimize it with the Newton method.

In order to avoid the problem of starting on a saddle point, the localization procedure starts by giving a little kick in the MOs, by putting "kick in mos" true, in order to break the symmetry and escape from a possible saddle point.

In order to speed up the iteration we compute the gradient, the diagonal hessian and the step in temporary matrices of the size (number MOs in mo class by number MOs in mo class)

Remarks

Variables:

The indexes i and j refere to the positions of the elements in the "full space", i.e., the arrays containing elements for all the MOs, but the indexes tmp_i and tmp_j to the positions of the elements in the "reduced space/subspace", i.e., the arrays containing elements for a restricted number of MOs. Example: The gradient for the localization of the core MOs can be expressed as a vector of length mo_num*(mo_num-1)/2 with only n_core_orb*(n_core_orb-1)/2 non zero elements, so it is more relevant to use a vector of size n_act_orb*(n_core_orb-1)/2. So here the gradient is a vector of size tmp_list_size*(tmp_list_size)/2 where tmp_list_size is the number of MOs is the corresponding mo class. The same thing happened for the hessian, the matrix containing the step and the rotation matrix, which are tmp_list_size by tmp_list_size matrices.

Ex gradient for 4 core orbitales:

\begin{align*} \begin{pmatrix} 0 & -a & -b & -d & \hdots & 0 \\ a & 0 & -c & -e & \hdots & 0 \\ b & c & 0 & -f & \hdots & 0 \\ d & e & f & 0 & \hdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \hdots & 0 \\ \end{pmatrix} \Rightarrow \begin{pmatrix} a \\ b \\ c \\ e \\ f \\ 0 \\ \vdots \\ 0 \\ \end{pmatrix} \end{align*} \begin{align*} \begin{pmatrix} 0 & -a & -b & -d & \hdots & 0 \\ a & 0 & -c & -e & \hdots & 0 \\ b & c & 0 & -f & \hdots & 0 \\ d & e & f & 0 & \hdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \hdots & 0 \\ \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & -a & -b & -d \\ a & 0 & -c & -e \\ b & c & 0 & -f \\ d & e & f & 0 \\ \end{pmatrix} \Rightarrow \begin{pmatrix} a \\ b \\ c \\ e \\ f \\ \end{pmatrix} \end{align*}

The same thing can be done if indexes of the orbitales are not consecutives since it's done with lists of MOs:

\begin{align*} \begin{pmatrix} 0 & -a & 0 & -b & -d & \hdots & 0 \\ a & 0 & 0 & -c & -e & \hdots & 0 \\ 0 & 0 & 0 & 0 & 0 & \hdots & 0 \\ b & c & 0 & 0 & -f & \hdots & 0 \\ d & e & 0 & f & 0 & \hdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \hdots & 0 \\ \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & -a & -b & -d \\ a & 0 & -c & -e \\ b & c & 0 & -f \\ d & e & f & 0 \\ \end{pmatrix} \Rightarrow \begin{pmatrix} a \\ b \\ c \\ e \\ f \\ \end{pmatrix} \end{align*}

The dipoles are updated using the "ao to mo" subroutine without the "restore symmetry" which is actually in N^4 but can be rewrite in N^2 log(N^2). The bottleneck of the program is normally N^3 with the matrix multiplications/diagonalizations. The use of the full hessian can be an improvement but it will scale in N^4…

Program

program localization

  implicit none

  call set_classes_loc
  call run_localization
  call unset_classes_loc
  
end

Variables:

pre_rot(mo_num, mo_num) double precision Matrix for the pre rotation
R(mo_num,mo_num) double precision Rotation matrix
tmp_R(:,:) double precision Rottation matrix in a subsapce
prev_mos(ao_num, mo_num) double precision Previous mo_coef
spatial_extent(mo_num) double precision Spatial extent of the orbitals
criterion double precision Localization criterion
prev_criterion double precision Previous criterion
criterion_model double precision Estimated next criterion
rho double precision Ratio to measure the agreement between the model
and the reality
delta double precision Radisu of the trust region
norm_grad double precision Norm of the gradient
info integer for dsyev from Lapack
max_elem double precision maximal element in the gradient
v_grad(:) double precision Gradient
H(:,:) double precision Hessian (diagonal)
e_val(:) double precision Eigenvalues of the hessian
W(:,:) double precision Eigenvectors of the hessian
tmp_x(:) double precision Step in 1D (in a subaspace)
tmp_m_x(:,:) double precision Step in 2D (in a subaspace)
tmp_list(:) double precision List of MOs in a mo_class
i,j,k integer Indexes in the full MO space
tmp_i, tmp_j, tmp_k integer Indexes in a subspace
l integer Index for the mo_class
key(:) integer Key to sort the eigenvalues of the hessian
nb_iter integer Number of iterations
must_exit logical To exit the trust region loop
cancel_step logical To cancel a step
not_*converged logical To localize the different mo classes
t* double precision To measure the time
n integer mo_num*(mo_num-1)/2, number of orbital parameters
tmp_n integer dim_subspace*(dim_subspace-1)/2
Number of dimension in the subspace

Variables in qp_edit for the localization:

localization_method
localization_max_nb_iter
default_mo_class
thresh_loc_max_elem_grad
kick_in_mos
angle_pre_rot
  • all the variables for the trust region

Cf. qp_edit orbital optimization

subroutine run_localization

  include 'pi.h'

  BEGIN_DOC
  ! Orbital localization
  END_DOC

  implicit none

  ! Variables
  double precision, allocatable :: pre_rot(:,:), R(:,:)
  double precision, allocatable :: prev_mos(:,:), spatial_extent(:), tmp_R(:,:)
  double precision              :: criterion, norm_grad
  integer                       :: i,j,k,l,p, tmp_i, tmp_j, tmp_k
  integer                       :: info
  integer                       :: n, tmp_n, tmp_list_size
  double precision, allocatable :: v_grad(:), H(:), tmp_m_x(:,:), tmp_x(:),W(:),e_val(:)
  double precision              :: max_elem, t1, t2, t3, t4, t5, t6
  integer, allocatable          :: tmp_list(:), key(:)
  double precision              :: prev_criterion, rho, delta, criterion_model
  integer                       :: nb_iter, nb_sub_iter
  logical                       :: not_converged, not_core_converged
  logical                       :: not_act_converged, not_inact_converged, not_virt_converged
  logical                       :: use_trust_region, must_exit, cancel_step,enforce_step_cancellation

  n = mo_num*(mo_num-1)/2

  ! Allocation
  allocate(spatial_extent(mo_num))
  allocate(pre_rot(mo_num, mo_num), R(mo_num, mo_num))
  allocate(prev_mos(ao_num, mo_num))

  ! Locality before the localization
  call compute_spatial_extent(spatial_extent)

  ! Choice of the method
  print*,''
  print*,'Localization method:',localization_method
  if (localization_method == 'boys') then
    print*,'Foster-Boys localization'
  elseif (localization_method == 'pipek') then
    print*,'Pipek-Mezey localization'
  else
    print*,'Unknown localization_method, please select boys or pipek'
    call abort
  endif
  print*,''

  ! Localization criterion (FB, PM, ...) for each mo_class
  print*,'### Before the pre rotation'
  
  ! Debug
  if (debug_hf) then
    print*,'HF energy:', HF_energy
  endif
  
  do l = 1, 4
    if (l==1) then ! core
      tmp_list_size = dim_list_core_orb
    elseif (l==2) then ! act
      tmp_list_size = dim_list_act_orb
    elseif (l==3) then ! inact
      tmp_list_size = dim_list_inact_orb
    else ! virt
      tmp_list_size = dim_list_virt_orb
    endif

     ! Allocation tmp array  
    allocate(tmp_list(tmp_list_size))

    ! To give the list of MOs in a mo_class
    if (l==1) then ! core
      tmp_list = list_core
    elseif (l==2) then
      tmp_list = list_act
    elseif (l==3) then
      tmp_list = list_inact
    else
      tmp_list = list_virt
    endif

    if (tmp_list_size >= 2) then
      call criterion_localization(tmp_list_size, tmp_list,criterion)
      print*,'Criterion:', criterion, mo_class(tmp_list(1))
    endif

    deallocate(tmp_list)    

  enddo

  ! Debug
  !print*,'HF', HF_energy

Loc

  ! Pre rotation, to give a little kick in the MOs
  call apply_pre_rotation()

  ! Criterion after the pre rotation
  ! Localization criterion (FB, PM, ...) for each mo_class
  print*,'### After the pre rotation'
  
  ! Debug
  if (debug_hf) then
    touch mo_coef
    print*,'HF energy:', HF_energy
  endif
  
  do l = 1, 4
    if (l==1) then ! core
      tmp_list_size = dim_list_core_orb
    elseif (l==2) then ! act
      tmp_list_size = dim_list_act_orb
    elseif (l==3) then ! inact
      tmp_list_size = dim_list_inact_orb
    else ! virt
      tmp_list_size = dim_list_virt_orb
    endif
    
    if (tmp_list_size >= 2) then
      ! Allocation tmp array  
      allocate(tmp_list(tmp_list_size))

      ! To give the list of MOs in a mo_class
      if (l==1) then ! core
        tmp_list = list_core
      elseif (l==2) then
        tmp_list = list_act
      elseif (l==3) then
        tmp_list = list_inact
      else
        tmp_list = list_virt
      endif

      call criterion_localization(tmp_list_size, tmp_list,criterion)
      print*,'Criterion:', criterion, trim(mo_class(tmp_list(1)))
      
      deallocate(tmp_list)    
    endif
    
  enddo

  ! Debug
  !print*,'HF', HF_energy

  print*,''
  print*,'========================'
  print*,'  Orbital localization'
  print*,'========================'
  print*,'' 

  !Initialization
  not_converged = .TRUE.

  ! To do the localization only if there is at least 2 MOs
  if (dim_list_core_orb >= 2) then
    not_core_converged = .TRUE.
  else
    not_core_converged = .FALSE. 
  endif
  
  if (dim_list_act_orb >= 2) then
    not_act_converged = .TRUE.
  else
    not_act_converged = .FALSE.
  endif

  if (dim_list_inact_orb >= 2) then
    not_inact_converged = .TRUE.
  else
    not_inact_converged = .FALSE.
  endif

  if (dim_list_virt_orb >= 2) then
    not_virt_converged = .TRUE.
  else
    not_virt_converged = .FALSE.
  endif
 
  ! Loop over the mo_classes
  do l = 1, 4

    if (l==1) then ! core
      not_converged = not_core_converged
      tmp_list_size = dim_list_core_orb
    elseif (l==2) then ! act
      not_converged = not_act_converged
      tmp_list_size = dim_list_act_orb
    elseif (l==3) then ! inact
      not_converged = not_inact_converged
      tmp_list_size = dim_list_inact_orb
    else ! virt
      not_converged = not_virt_converged
      tmp_list_size = dim_list_virt_orb
    endif

    ! Next iteration if converged = true 
    if (.not. not_converged) then
      cycle
    endif
 
    ! Allocation tmp array  
    allocate(tmp_list(tmp_list_size))

    ! To give the list of MOs in a mo_class
    if (l==1) then ! core
      tmp_list = list_core
    elseif (l==2) then
      tmp_list = list_act
    elseif (l==3) then
      tmp_list = list_inact
    else
      tmp_list = list_virt
    endif

    ! Display
    if (not_converged) then
      print*,''
      print*,'###', trim(mo_class(tmp_list(1))), 'MOs ###'
      print*,''
    endif

    ! Size for the 2D -> 1D transformation 
    tmp_n = tmp_list_size * (tmp_list_size - 1)/2

    ! Without hessian + trust region 
    if (.not. localization_use_hessian) then
       
      ! Allocation of temporary arrays
      allocate(v_grad(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
      allocate(tmp_R(tmp_list_size, tmp_list_size), tmp_x(tmp_n))

      ! Criterion
      call criterion_localization(tmp_list_size, tmp_list, prev_criterion)

      ! Init
      nb_iter = 0
      delta = 1d0

      !Loop
      do while (not_converged)
         
        print*,''
        print*,'***********************'
        print*,'Iteration', nb_iter
        print*,'***********************'
        print*,''
        
        ! Angles of rotation
        call theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
        tmp_m_x = - tmp_m_x * delta

        ! Rotation submatrix
        call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
             info, enforce_step_cancellation)

        ! To ensure that the rotation matrix is unitary
        if (enforce_step_cancellation) then
          print*, 'Step cancellation, too large error in the rotation matrix'
          delta = delta * 0.5d0
          cycle
        else
          delta = min(delta * 2d0, 1d0)
        endif

        ! Full rotation matrix and application of the rotation
        call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
        call apply_mo_rotation(R, prev_mos)

        ! Update the needed data
        call update_data_localization()

        ! New criterion
        call criterion_localization(tmp_list_size, tmp_list, criterion)
        print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
        print*,'Max elem :', max_elem
        print*,'Delta    :', delta
        
        nb_iter = nb_iter + 1

        ! Exit
        if (nb_iter >= localization_max_nb_iter .or. dabs(max_elem) < thresh_loc_max_elem_grad) then
           not_converged = .False.
        endif
      enddo

      ! Save the changes
      call update_data_localization()
      call save_mos()
      TOUCH mo_coef

      ! Deallocate
      deallocate(v_grad, tmp_m_x, tmp_list)
      deallocate(tmp_R, tmp_x)

    ! Trust region
    else
    
      ! Allocation of temporary arrays
      allocate(v_grad(tmp_n), H(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
      allocate(tmp_R(tmp_list_size, tmp_list_size))
      allocate(tmp_x(tmp_n), W(tmp_n), e_val(tmp_n), key(tmp_n))

      ! ### Initialization ###
      delta = 0d0 ! can be deleted (normally)
      nb_iter = 0 ! Must start at 0 !!!
      rho = 0.5d0 ! Must be 0.5

      ! Compute the criterion before the loop
      call criterion_localization(tmp_list_size, tmp_list, prev_criterion)

      ! Loop until the convergence
      do while (not_converged)

        print*,''
        print*,'***********************'
        print*,'Iteration', nb_iter
        print*,'***********************'
        print*,''
  
        ! Gradient
        call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
        ! Diagonal hessian
        call hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
        
        ! Diagonalization of the diagonal hessian by hands
        !call diagonalization_hessian(tmp_n,H,e_val,w)
        do i = 1, tmp_n
          e_val(i) = H(i)
        enddo

        ! Key list for dsort
        do i = 1, tmp_n 
          key(i) = i
        enddo

        ! Sort of the eigenvalues
        call dsort(e_val, key, tmp_n)

        ! Eigenvectors
        W = 0d0
        do i = 1, tmp_n
          W(i) = dble(key(i))
        enddo

        ! To enter in the loop just after
        cancel_step = .True.
        nb_sub_iter = 0 

        ! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
        do while (cancel_step)
          print*,'-----------------------------'
          print*, mo_class(tmp_list(1))
          print*,'Iteration:', nb_iter
          print*,'Sub iteration:', nb_sub_iter
          print*,'Max elem grad:', max_elem
          print*,'-----------------------------'

          ! Hessian,gradient,Criterion -> x 
          call trust_region_step_w_expected_e(tmp_n,1, H, W, e_val, v_grad, prev_criterion, &
               rho, nb_iter, delta, criterion_model, tmp_x, must_exit)

          ! Internal loop exit condition
          if (must_exit) then
            print*,'trust_region_step_w_expected_e sent: Exit'
            exit 
          endif

          ! 1D tmp -> 2D tmp 
          call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)

          ! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
          call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
               info, enforce_step_cancellation)

          if (enforce_step_cancellation) then
            print*, 'Step cancellation, too large error in the rotation matrix'
            rho = 0d0
            cycle
          endif

          ! tmp_R to R, subspace to full space
          call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
        
          ! Rotation of the MOs
          call apply_mo_rotation(R, prev_mos)   

          ! Update the things related to mo_coef
          call update_data_localization()

          ! Update the criterion
          call criterion_localization(tmp_list_size, tmp_list, criterion)
          print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion

          ! Criterion -> step accepted or rejected 
          call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
               criterion_model, rho, cancel_step)

          ! Cancellation of the step, previous MOs
          if (cancel_step) then
            mo_coef = prev_mos
          endif

          nb_sub_iter = nb_sub_iter + 1
        enddo
        !call save_mos() !### depend of the time for 1 iteration

        ! To exit the external loop if must_exti = .True.
        if (must_exit) then
          exit
        endif 

        ! Step accepted, nb iteration + 1
        nb_iter = nb_iter + 1

        ! External loop exit conditions
        if (DABS(max_elem) < thresh_loc_max_elem_grad) then
          not_converged = .False.
        endif
        if (nb_iter > localization_max_nb_iter) then
          not_converged = .False.
        endif
      enddo

      ! Deallocation of temporary arrays
      deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
      
      ! Save the MOs
      call save_mos()
      TOUCH mo_coef
 
      ! Debug
      if (debug_hf) then
        touch mo_coef
        print*,'HF energy:', HF_energy
      endif
      
    endif
  enddo

  ! Seems unecessary
  TOUCH mo_coef 

  ! To sort the MOs using the diagonal elements of the Fock matrix
  if (sort_mos_by_e) then
    call run_sort_by_fock_energies()
  endif

  ! Debug
  if (debug_hf) then
    touch mo_coef
    print*,'HF energy:', HF_energy
  endif

  ! Locality after the localization
  call compute_spatial_extent(spatial_extent)

end

Gathering

Gradient/hessian/criterion for the localization: They are chosen in function of the localization method

Gradient:

qp_edit :

localization_method method for the localization

Input:

tmp_n integer Number of parameters in the MO subspace
tmp_list_size integer Number of MOs in the mo_class we want to localize
tmp_list(tmp_list_size) integer MOs in the mo_class

Output:

v_grad(tmp_n) double precision Gradient in the subspace
max_elem double precision Maximal element in the gradient
norm_grad double precision Norm of the gradient
subroutine gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
  
  include 'pi.h'

  implicit none

  BEGIN_DOC
  ! Compute the gradient of the chosen localization method
  END_DOC
  
  integer, intent(in)           :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad

  if (localization_method == 'boys') then
    call gradient_FB_omp(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
    !call gradient_FB(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
  elseif (localization_method== 'pipek') then
    call gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
  else
    print*,'Unkown method:'//localization_method
    call abort
  endif

end

Hessian:

Output:

H(tmp_n,tmp_n) double precision Gradient in the subspace
max_elem double precision Maximal element in the gradient
norm_grad double precision Norm of the gradient
subroutine hessian_localization(tmp_n, tmp_list_size, tmp_list, H)

  include 'pi.h'

  implicit none

  BEGIN_DOC
  ! Compute the diagonal hessian of the chosen localization method
  END_DOC

  integer, intent(in)           :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: H(tmp_n)

  if (localization_method == 'boys') then
    call hessian_FB_omp(tmp_n, tmp_list_size, tmp_list, H)
    !call hessian_FB(tmp_n, tmp_list_size, tmp_list, H) ! non OMP for debugging
  elseif (localization_method == 'pipek') then
    call hessian_PM(tmp_n, tmp_list_size, tmp_list, H)
  else
    print*,'Unkown method: '//localization_method
    call abort
  endif

end

Criterion:

Output:

criterion double precision Criterion for the orbital localization
subroutine criterion_localization(tmp_list_size, tmp_list,criterion)

  include 'pi.h'
  
  implicit none

  BEGIN_DOC
  ! Compute the localization criterion of the chosen localization method
  END_DOC

  integer, intent(in)           :: tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: criterion

  if (localization_method == 'boys') then
    call criterion_FB(tmp_list_size, tmp_list, criterion)
  elseif (localization_method == 'pipek') then
    !call criterion_PM(tmp_list_size, tmp_list,criterion)
    call criterion_PM_v3(tmp_list_size, tmp_list, criterion)
  else
    print*,'Unkown method: '//localization_method
    call abort
  endif

end

Subroutine to update the datas needed for the localization

subroutine update_data_localization()

  include 'pi.h'

  implicit none

  if (localization_method == 'boys') then
    ! Update the dipoles
    call ao_to_mo_no_sym(ao_dipole_x, ao_num, mo_dipole_x, mo_num)
    call ao_to_mo_no_sym(ao_dipole_y, ao_num, mo_dipole_y, mo_num)
    call ao_to_mo_no_sym(ao_dipole_z, ao_num, mo_dipole_z, mo_num)
  elseif (localization_method == 'pipek') then
    ! Nothing required
  else
    print*,'Unkown method: '//localization_method
    call abort
  endif
end

Angles:

Output:

tmp_m_x(tmp_list_size, tmp_list_size) double precision Angles for the rotations in the subspace
max_elem double precision Maximal angle
subroutine theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
  
  include 'pi.h'

  implicit none

  BEGIN_DOC
  ! Compute the rotation angles between the MOs for the chosen localization method
  END_DOC
  
  integer, intent(in)           :: tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: tmp_m_x(tmp_list_size,tmp_list_size), max_elem

  if (localization_method == 'boys') then
    call theta_FB(tmp_list, tmp_list_size, tmp_m_x, max_elem)
  elseif (localization_method== 'pipek') then
    call theta_PM(tmp_list, tmp_list_size, tmp_m_x, max_elem)
  else
    print*,'Unkown method: '//localization_method
    call abort
  endif

end

Foster-Boys

Gradient

Input:

tmp_n integer Number of parameters in the MO subspace
tmp_list_size integer Number of MOs in the mo_class we want to localize
tmp_list(tmp_list_size) integer MOs in the mo_class

Output:

v_grad(tmp_n) double precision Gradient in the subspace
max_elem double precision Maximal element in the gradient
norm_grad double precision Norm of the gradient

Internal:

m_grad(tmp_n,tmp_n) double precision Gradient in the matrix form
i,j,k integer indexes in the full space
tmp_i,tmp_j,tmp_k integer indexes in the subspace
t* double precision to compute the time
subroutine gradient_FB(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
  
  implicit none
  
  BEGIN_DOC
  ! Compute the gradient for the Foster-Boys localization
  END_DOC
  
  integer, intent(in)           :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
  double precision, allocatable :: m_grad(:,:)
  integer                       :: i,j,k,tmp_i,tmp_j,tmp_k
  double precision              :: t1, t2, t3

  print*,''
  print*,'---gradient_FB---'

  call wall_time(t1)

  ! Allocation
  allocate(m_grad(tmp_list_size, tmp_list_size))

  ! Calculation
  do tmp_j = 1, tmp_list_size
    j = tmp_list(tmp_j)
    do tmp_i = 1, tmp_list_size
      i = tmp_list(tmp_i)
      m_grad(tmp_i,tmp_j) = 4d0 * mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
                           +4d0 * mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
                           +4d0 * mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j))
    enddo
  enddo
  
  ! 2D -> 1D
  do tmp_k = 1, tmp_n
    call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
    v_grad(tmp_k) = m_grad(tmp_i,tmp_j) 
  enddo

  ! Maximum element in the gradient
  max_elem = 0d0
  do tmp_k = 1, tmp_n
    if (ABS(v_grad(tmp_k)) > max_elem) then
      max_elem = ABS(v_grad(tmp_k))
    endif
  enddo 
 
  ! Norm of the gradient
  norm_grad = 0d0
  do tmp_k = 1, tmp_n
    norm_grad = norm_grad + v_grad(tmp_k)**2
  enddo
  norm_grad = dsqrt(norm_grad)

  print*, 'Maximal element in the gradient:', max_elem
  print*, 'Norm of the gradient:', norm_grad  

  ! Deallocation
  deallocate(m_grad)

  call wall_time(t2)
  t3 = t2 - t1
  print*,'Time in gradient_FB:', t3

  print*,'---End gradient_FB---'

end subroutine

Gradient (OMP)

subroutine gradient_FB_omp(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
  
  use omp_lib

  implicit none

  BEGIN_DOC
  ! Compute the gradient for the Foster-Boys localization
  END_DOC
  
  integer, intent(in)           :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
  double precision, allocatable :: m_grad(:,:)
  integer                       :: i,j,k,tmp_i,tmp_j,tmp_k
  double precision              :: t1, t2, t3

  print*,''
  print*,'---gradient_FB_omp---'

  call wall_time(t1)

  ! Allocation
  allocate(m_grad(tmp_list_size, tmp_list_size))

  ! Initialization omp
  call omp_set_max_active_levels(1)

  !$OMP PARALLEL                                                             &
      !$OMP PRIVATE(i,j,tmp_i,tmp_j,tmp_k)                                         &
      !$OMP SHARED(tmp_n,tmp_list_size,m_grad,v_grad,mo_dipole_x,mo_dipole_y,mo_dipole_z,tmp_list) &
      !$OMP DEFAULT(NONE)

  ! Calculation
  !$OMP DO
  do tmp_j = 1, tmp_list_size
    j = tmp_list(tmp_j)
    do tmp_i = 1, tmp_list_size
      i = tmp_list(tmp_i)
      m_grad(tmp_i,tmp_j) = 4d0 * mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
                           +4d0 * mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
                           +4d0 * mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j))
    enddo
  enddo
  !$OMP END DO

  ! 2D -> 1D
  !$OMP DO
  do tmp_k = 1, tmp_n
    call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
    v_grad(tmp_k) = m_grad(tmp_i,tmp_j) 
  enddo 
  !$OMP END DO

  !$OMP END PARALLEL

  call omp_set_max_active_levels(4)

  ! Maximum element in the gradient
  max_elem = 0d0
  do tmp_k = 1, tmp_n
    if (ABS(v_grad(tmp_k)) > max_elem) then
      max_elem = ABS(v_grad(tmp_k))
    endif
  enddo 

  ! Norm of the gradient
  norm_grad = 0d0
  do tmp_k = 1, tmp_n
    norm_grad = norm_grad + v_grad(tmp_k)**2
  enddo
  norm_grad = dsqrt(norm_grad)

  print*, 'Maximal element in the gradient:', max_elem
  print*, 'Norm of the gradient:', norm_grad  

  ! Deallocation
  deallocate(m_grad)

  call wall_time(t2)
  t3 = t2 - t1
  print*,'Time in gradient_FB_omp:', t3

  print*,'---End gradient_FB_omp---'

end subroutine

Hessian

Output:

H(tmp_n,tmp_n) double precision Gradient in the subspace
max_elem double precision Maximal element in the gradient
norm_grad double precision Norm of the gradient

Internal: Internal:

beta(tmp_n,tmp_n) double precision beta in the documentation below to compute the hesian
i,j,k integer indexes in the full space
tmp_i,tmp_j,tmp_k integer indexes in the subspace
t* double precision to compute the time
subroutine hessian_FB(tmp_n, tmp_list_size, tmp_list, H)

  implicit none
  
  BEGIN_DOC
  ! Compute the diagonal hessian for the Foster-Boys localization
  END_DOC

  integer, intent(in)           :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: H(tmp_n)
  double precision, allocatable :: beta(:,:)
  integer                       :: i,j,tmp_k,tmp_i, tmp_j
  double precision              :: max_elem, t1,t2,t3
   
  print*,''
  print*,'---hessian_FB---'

  call wall_time(t1)


  ! Allocation
  allocate(beta(tmp_list_size,tmp_list_size))
  
  ! Calculation
  do tmp_j = 1, tmp_list_size
    j = tmp_list(tmp_j)
    do tmp_i = 1, tmp_list_size
      i = tmp_list(tmp_i)
      beta(tmp_i,tmp_j) = (mo_dipole_x(i,i) - mo_dipole_x(j,j))**2 - 4d0 * mo_dipole_x(i,j)**2 &
                         +(mo_dipole_y(i,i) - mo_dipole_y(j,j))**2 - 4d0 * mo_dipole_y(i,j)**2 &
                         +(mo_dipole_z(i,i) - mo_dipole_z(j,j))**2 - 4d0 * mo_dipole_z(i,j)**2
    enddo
  enddo

  ! Diagonal of the hessian
  H = 0d0
  do tmp_k = 1, tmp_n
    call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
    H(tmp_k) = 4d0 * beta(tmp_i, tmp_j)
  enddo
  
  ! Deallocation
  deallocate(beta)
 
  call wall_time(t2)
  t3 = t2 - t1
  print*,'Time in hessian_FB:', t3

  print*,'---End hessian_FB---'

end subroutine

Hessian (OMP)

subroutine hessian_FB_omp(tmp_n, tmp_list_size, tmp_list, H)

  implicit none

  BEGIN_DOC
  ! Compute the diagonal hessian for the Foster-Boys localization
  END_DOC

  integer, intent(in)           :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: H(tmp_n)
  double precision, allocatable :: beta(:,:)
  integer                       :: i,j,tmp_k,tmp_i,tmp_j
  double precision              :: max_elem, t1,t2,t3
   
  print*,''
  print*,'---hessian_FB_omp---'

  call wall_time(t1)

  ! Allocation
  allocate(beta(tmp_list_size,tmp_list_size))

  ! Initialization omp
  call omp_set_max_active_levels(1)

  !$OMP PARALLEL                                                             &
      !$OMP PRIVATE(i,j,tmp_i,tmp_j,tmp_k)                                         &
      !$OMP SHARED(tmp_n,tmp_list_size,beta,H,mo_dipole_x,mo_dipole_y,mo_dipole_z,tmp_list) &
      !$OMP DEFAULT(NONE)

  
  ! Calculation
  !$OMP DO
  do tmp_j = 1, tmp_list_size
    j = tmp_list(tmp_j)
    do tmp_i = 1, tmp_list_size
      i = tmp_list(tmp_i)
      beta(tmp_i,tmp_j) = (mo_dipole_x(i,i) - mo_dipole_x(j,j))**2 - 4d0 * mo_dipole_x(i,j)**2 &
                         +(mo_dipole_y(i,i) - mo_dipole_y(j,j))**2 - 4d0 * mo_dipole_y(i,j)**2 &
                         +(mo_dipole_z(i,i) - mo_dipole_z(j,j))**2 - 4d0 * mo_dipole_z(i,j)**2
    enddo
  enddo
  !$OMP END DO

  ! Initialization
  !$OMP DO
  do i = 1, tmp_n
    H(i) = 0d0 
  enddo
  !$OMP END DO
  
  ! Diagonalm of the hessian
  !$OMP DO
  do tmp_k = 1, tmp_n
    call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
    H(tmp_k) = 4d0 * beta(tmp_i, tmp_j)
  enddo
  !$OMP END DO
  
  !$OMP END PARALLEL

  call omp_set_max_active_levels(4)

  ! Deallocation
  deallocate(beta)
 
  call wall_time(t2)
  t3 = t2 - t1
  print*,'Time in hessian_FB_omp:', t3

  print*,'---End hessian_FB_omp---'

end subroutine

Pipek-Mezey

Gradient v1

subroutine grad_pipek(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)

  implicit none

  BEGIN_DOC
  ! Compute gradient for the Pipek-Mezey localization
  END_DOC

  integer, intent(in)           :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
  double precision, allocatable :: m_grad(:,:), tmp_int(:,:)
  integer                       :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho 

  ! Allocation
  allocate(m_grad(tmp_list_size, tmp_list_size), tmp_int(tmp_list_size, tmp_list_size))

  ! Initialization 
  m_grad = 0d0

  do a = 1, nucl_num ! loop over the nuclei
     tmp_int = 0d0 ! Initialization for each nuclei

     ! Loop over the MOs of the a given mo_class to compute <i|P_a|j>
     do tmp_j = 1, tmp_list_size
        j = tmp_list(tmp_j) 
        do tmp_i = 1, tmp_list_size
           i = tmp_list(tmp_i)
           do rho = 1, ao_num ! loop over all the AOs
              do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
                 mu = nucl_aos(a,b) ! AO centered on atom a 

                 tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
                      + mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))

              enddo
           enddo
        enddo
     enddo

     ! Gradient
     do tmp_j = 1, tmp_list_size
        do tmp_i = 1, tmp_list_size

           m_grad(tmp_i,tmp_j) = m_grad(tmp_i,tmp_j) +  4d0 * tmp_int(tmp_i,tmp_j) * (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))

        enddo
     enddo

  enddo

  ! 2D -> 1D
  do tmp_k = 1, tmp_n
     call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
     v_grad(tmp_k) = m_grad(tmp_i,tmp_j) 
  enddo

  ! Maximum element in the gradient
  max_elem = 0d0
  do tmp_k = 1, tmp_n
     if (ABS(v_grad(tmp_k)) > max_elem) then
        max_elem = ABS(v_grad(tmp_k))
     endif
  enddo

  ! Norm of the gradient
  norm_grad = 0d0
  do tmp_k = 1, tmp_n
     norm_grad = norm_grad + v_grad(tmp_k)**2
  enddo
  norm_grad = dsqrt(norm_grad)

  print*, 'Maximal element in the gradient:', max_elem
  print*, 'Norm of the gradient:', norm_grad

  ! Deallocation
  deallocate(m_grad,tmp_int)

end subroutine grad_pipek

Gradient

The gradient is

\begin{align*} \left. \frac{\partial \mathcal{P} (\theta)}{\partial \theta} \right|_{\theta=0}= \gamma^{PM} \end{align*}

with

\begin{align*} \gamma_{st}^{PM} = \sum_{A=1}^N <s|P_A|t> \left[ <s| P_A |s> - <t|P_A|t> \right] \end{align*} \begin{align*} <s|P_A|t> = \frac{1}{2} \sum_{\rho} \sum_{\mu \in A} \left[ c_{\rho}^{s*} S_{\rho \nu} c_{\mu}^{t} +c_{\mu}^{s*} S_{\mu \rho} c_{\rho}^t \right] \end{align*}

$\sum_{\rho}$ -> sum over all the AOs $\sum_{\mu \in A}$ -> sum over the AOs which belongs to atom A $c^t$ -> expansion coefficient of orbital |t>

Input:

tmp_n integer Number of parameters in the MO subspace
tmp_list_size integer Number of MOs in the mo_class we want to localize
tmp_list(tmp_list_size) integer MOs in the mo_class

Output:

v_grad(tmp_n) double precision Gradient in the subspace
max_elem double precision Maximal element in the gradient
norm_grad double precision Norm of the gradient

Internal:

m_grad(tmp_list_size,tmp_list_size) double precision Gradient in a 2D array
tmp_int(tmp_list_size,tmp_list_size) Temporary array to store the integrals
tmp_accu(tmp_list_size,tmp_list_size) Temporary array to store a matrix
product and compute tmp_int
CS(tmp_list_size,ao_num) Array to store the result of mo_coef * ao_overlap
tmp_mo_coef(ao_num,tmp_list_size) Array to store just the useful MO coefficients
depending of the mo_class
tmp_mo_coef2(nucl_n_aos(a),tmp_list_size) Array to store just the useful MO coefficients
depending of the nuclei
tmp_CS(tmp_list_size,nucl_n_aos(a)) Array to store just the useful mo_coef * ao_overlap
values depending of the nuclei
a index to loop over the nuclei
b index to loop over the AOs which belongs to the nuclei a
mu index to refer to an AO which belongs to the nuclei a
rho index to loop over all the AOs
subroutine gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)

  implicit none

  BEGIN_DOC
  ! Compute gradient for the Pipek-Mezey localization
  END_DOC
  
  integer, intent(in)           :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
  double precision, allocatable :: m_grad(:,:), tmp_int(:,:), CS(:,:), tmp_mo_coef(:,:), tmp_mo_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
  integer                       :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho
  double precision              :: t1,t2,t3

  print*,''
  print*,'---gradient_PM---'

  call wall_time(t1)

  ! Allocation
  allocate(m_grad(tmp_list_size, tmp_list_size), tmp_int(tmp_list_size, tmp_list_size),tmp_accu(tmp_list_size, tmp_list_size))
  allocate(CS(tmp_list_size,ao_num),tmp_mo_coef(ao_num,tmp_list_size))


  ! submatrix of the mo_coef
  do tmp_i = 1, tmp_list_size
    i = tmp_list(tmp_i)
    do j = 1, ao_num

      tmp_mo_coef(j,tmp_i) = mo_coef(j,i)
 
    enddo
  enddo

  call dgemm('T','N',tmp_list_size,ao_num,ao_num,1d0,tmp_mo_coef,size(tmp_mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
 
  m_grad = 0d0

  do a = 1, nucl_num ! loop over the nuclei
    tmp_int = 0d0

    !do tmp_j = 1, tmp_list_size
    !  do tmp_i = 1, tmp_list_size
    !    do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
    !      mu = nucl_aos(a,b)

    !      tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_coef(mu,tmp_j) + tmp_mo_coef(mu,tmp_i) * CS(tmp_j,mu))

    !                             !  (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
    !                             !+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))

    !    enddo
    !  enddo
    !enddo

    allocate(tmp_mo_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))

    do tmp_i = 1, tmp_list_size
      do b = 1, nucl_n_aos(a)
        mu = nucl_aos(a,b)

        tmp_mo_coef2(b,tmp_i) = tmp_mo_coef(mu,tmp_i)

      enddo
    enddo
    
    do b = 1, nucl_n_aos(a)
      mu = nucl_aos(a,b)
      do tmp_i = 1, tmp_list_size

        tmp_CS(tmp_i,b) = CS(tmp_i,mu)

      enddo
    enddo   

    call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_coef2,size(tmp_mo_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
 
    do tmp_j = 1, tmp_list_size
      do tmp_i = 1, tmp_list_size

        tmp_int(tmp_i,tmp_j) = 0.5d0 * (tmp_accu(tmp_i,tmp_j) + tmp_accu(tmp_j,tmp_i))   

      enddo
    enddo

    deallocate(tmp_mo_coef2,tmp_CS)

    do tmp_j = 1, tmp_list_size
      do tmp_i = 1, tmp_list_size

        m_grad(tmp_i,tmp_j) = m_grad(tmp_i,tmp_j) +  4d0 * tmp_int(tmp_i,tmp_j) * (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))

      enddo
    enddo

  enddo

  ! 2D -> 1D
  do tmp_k = 1, tmp_n
    call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
    v_grad(tmp_k) = m_grad(tmp_i,tmp_j) 
  enddo

  ! Maximum element in the gradient
  max_elem = 0d0
  do tmp_k = 1, tmp_n
    if (ABS(v_grad(tmp_k)) > max_elem) then
      max_elem = ABS(v_grad(tmp_k))
    endif
  enddo 

  ! Norm of the gradient
  norm_grad = 0d0
  do tmp_k = 1, tmp_n
    norm_grad = norm_grad + v_grad(tmp_k)**2
  enddo
  norm_grad = dsqrt(norm_grad)

  print*, 'Maximal element in the gradient:', max_elem
  print*, 'Norm of the gradient:', norm_grad

  ! Deallocation
  deallocate(m_grad,tmp_int,CS,tmp_mo_coef)

  call wall_time(t2)
  t3 = t2 - t1
  print*,'Time in gradient_PM:', t3

  print*,'---End gradient_PM---'

end

Hessian v1

subroutine hess_pipek(tmp_n, tmp_list_size, tmp_list, H)

  implicit none

  BEGIN_DOC
  ! Compute diagonal hessian for the Pipek-Mezey localization
  END_DOC

  integer, intent(in)           :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: H(tmp_n)
  double precision, allocatable :: beta(:,:),tmp_int(:,:)
  integer                       :: i,j,tmp_k,tmp_i, tmp_j, a,b,rho,mu
  double precision              :: max_elem
    
  ! Allocation
  allocate(beta(tmp_list_size,tmp_list_size),tmp_int(tmp_list_size,tmp_list_size))

  beta = 0d0

  do a = 1, nucl_num
    tmp_int = 0d0

    do tmp_j = 1, tmp_list_size
      j = tmp_list(tmp_j)
      do tmp_i = 1, tmp_list_size
        i = tmp_list(tmp_i)
        do rho = 1, ao_num
          do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
            mu = nucl_aos(a,b)

            tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
                                   + mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))

          enddo
        enddo  
      enddo
    enddo

    ! Calculation
    do tmp_j = 1, tmp_list_size
      do tmp_i = 1, tmp_list_size

        beta(tmp_i,tmp_j) = beta(tmp_i, tmp_j) +  (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))**2 - 4d0 * tmp_int(tmp_i,tmp_j)**2

      enddo
    enddo
  
  enddo

  H = 0d0
  do tmp_k = 1, tmp_n
    call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
    H(tmp_k) = 4d0 * beta(tmp_i, tmp_j)
  enddo
  
  ! Deallocation
  deallocate(beta,tmp_int)

end

Hessian

The hessian is

\begin{align*} \left. \frac{\partial^2 \mathcal{P} (\theta)}{\partial \theta^2}\right|_{\theta=0} = 4 \beta^{PM} \end{align*} \begin{align*} \beta_{st}^{PM} = \sum_{A=1}^N \left( <s|P_A|t>^2 - \frac{1}{4} \left[<s|P_A|s> - <t|P_A|t> \right]^2 \right) \end{align*}

with

\begin{align*} <s|P_A|t> = \frac{1}{2} \sum_{\rho} \sum_{\mu \in A} \left[ c_{\rho}^{s*} S_{\rho \nu} c_{\mu}^{t} +c_{\mu}^{s*} S_{\mu \rho} c_{\rho}^t \right] \end{align*}

$\sum_{\rho}$ -> sum over all the AOs $\sum_{\mu \in A}$ -> sum over the AOs which belongs to atom A $c^t$ -> expansion coefficient of orbital |t>

subroutine hessian_PM(tmp_n, tmp_list_size, tmp_list, H)

  implicit none
  
  BEGIN_DOC
  ! Compute diagonal hessian for the Pipek-Mezey localization
  END_DOC

  integer, intent(in)           :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: H(tmp_n)
  double precision, allocatable :: beta(:,:),tmp_int(:,:),CS(:,:),tmp_mo_coef(:,:),tmp_mo_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
  integer                       :: i,j,tmp_k,tmp_i, tmp_j, a,b,rho,mu
  double precision              :: max_elem, t1,t2,t3
    
  print*,''
  print*,'---hessian_PM---'

  call wall_time(t1)

  ! Allocation
  allocate(beta(tmp_list_size,tmp_list_size),tmp_int(tmp_list_size,tmp_list_size),tmp_accu(tmp_list_size,tmp_list_size))
  allocate(CS(tmp_list_size,ao_num),tmp_mo_coef(ao_num,tmp_list_size))

  beta = 0d0

  do tmp_i = 1, tmp_list_size
    i = tmp_list(tmp_i)
    do j = 1, ao_num

      tmp_mo_coef(j,tmp_i) = mo_coef(j,i)
 
    enddo
  enddo

  call dgemm('T','N',tmp_list_size,ao_num,ao_num,1d0,tmp_mo_coef,size(tmp_mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
 
  do a = 1, nucl_num ! loop over the nuclei
    tmp_int = 0d0

    !do tmp_j = 1, tmp_list_size
    !  do tmp_i = 1, tmp_list_size
    !    do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
    !      mu = nucl_aos(a,b)

    !      tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_coef(mu,tmp_j) + tmp_mo_coef(mu,tmp_i) * CS(tmp_j,mu))

    !                             !  (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
    !                             !+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))

    !    enddo
    !  enddo
    !enddo
 
    allocate(tmp_mo_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))

    do tmp_i = 1, tmp_list_size
      do b = 1, nucl_n_aos(a)
        mu = nucl_aos(a,b)

        tmp_mo_coef2(b,tmp_i) = tmp_mo_coef(mu,tmp_i)

      enddo
    enddo
    
    do b = 1, nucl_n_aos(a)
      mu = nucl_aos(a,b)
      do tmp_i = 1, tmp_list_size

        tmp_CS(tmp_i,b) = CS(tmp_i,mu)

      enddo
    enddo   

    call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_coef2,size(tmp_mo_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
 
    do tmp_j = 1, tmp_list_size
      do tmp_i = 1, tmp_list_size

        tmp_int(tmp_i,tmp_j) = 0.5d0 * (tmp_accu(tmp_i,tmp_j) + tmp_accu(tmp_j,tmp_i))   

      enddo
    enddo

    deallocate(tmp_mo_coef2,tmp_CS)

    ! Calculation
    do tmp_j = 1, tmp_list_size
      do tmp_i = 1, tmp_list_size

        beta(tmp_i,tmp_j) = beta(tmp_i, tmp_j) +  (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))**2 - 4d0 * tmp_int(tmp_i,tmp_j)**2

      enddo
    enddo
  
  enddo

  H = 0d0
  do tmp_k = 1, tmp_n
    call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
    H(tmp_k) = 4d0 * beta(tmp_i, tmp_j)
  enddo
  
  ! Deallocation
  deallocate(beta,tmp_int)

  call wall_time(t2)
  t3 = t2 - t1
  print*,'Time in hessian_PM:', t3

  print*,'---End hessian_PM---'

end

Criterion

Criterion PM (old)

subroutine compute_crit_pipek(criterion)

  implicit none
  
  BEGIN_DOC
  ! Compute the Pipek-Mezey localization criterion
  END_DOC

  double precision, intent(out) :: criterion
  double precision, allocatable :: tmp_int(:,:)
  integer                       :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho 

  ! Allocation
  allocate(tmp_int(mo_num, mo_num))
 
  criterion = 0d0

  do a = 1, nucl_num ! loop over the nuclei
    tmp_int = 0d0

    do i = 1, mo_num
      do rho = 1, ao_num ! loop over all the AOs
        do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
          mu = nucl_aos(a,b)

          tmp_int(i,i) = tmp_int(i,i) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,i) &
                                 + mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,i))

        enddo
      enddo  
    enddo

    do i = 1, mo_num 
      criterion = criterion + tmp_int(i,i)**2
    enddo

  enddo
  
  criterion = - criterion 

  deallocate(tmp_int)

end

Criterion PM

The criterion is computed as

\begin{align*} \mathcal{P} = \sum_{i=1}^n \sum_{A=1}^N \left[ <i|P_A|i> \right]^2 \end{align*}

with

\begin{align*} <s|P_A|t> = \frac{1}{2} \sum_{\rho} \sum_{\mu \in A} \left[ c_{\rho}^{s*} S_{\rho \nu} c_{\mu}^{t} +c_{\mu}^{s*} S_{\mu \rho} c_{\rho}^t \right] \end{align*}
subroutine criterion_PM(tmp_list_size,tmp_list,criterion)

  implicit none
  
  BEGIN_DOC
  ! Compute the Pipek-Mezey localization criterion
  END_DOC

  integer, intent(in)           :: tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: criterion
  double precision, allocatable :: tmp_int(:,:),CS(:,:)
  integer                       :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho
  
  print*,''
  print*,'---criterion_PM---'
  
  ! Allocation
  allocate(tmp_int(tmp_list_size, tmp_list_size),CS(mo_num,ao_num))
  
  ! Initialization
  criterion = 0d0

  call dgemm('T','N',mo_num,ao_num,ao_num,1d0,mo_coef,size(mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
 
  do a = 1, nucl_num ! loop over the nuclei
    tmp_int = 0d0

      do tmp_i = 1, tmp_list_size
        i = tmp_list(tmp_i)
        do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
          mu = nucl_aos(a,b)
          
          tmp_int(tmp_i,tmp_i) = tmp_int(tmp_i,tmp_i) + 0.5d0 * (CS(i,mu) * mo_coef(mu,i) + mo_coef(mu,i) * CS(i,mu))

                                 !  (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
                                 !+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))

      enddo
    enddo

    do tmp_i = 1, tmp_list_size
      criterion = criterion + tmp_int(tmp_i,tmp_i)**2
    enddo

  enddo
  
  criterion = - criterion 

  deallocate(tmp_int,CS)

  print*,'---End criterion_PM---'

end

Criterion PM v3

subroutine criterion_PM_v3(tmp_list_size,tmp_list,criterion)

  implicit none
  
  BEGIN_DOC
  ! Compute the Pipek-Mezey localization criterion
  END_DOC
  
  integer, intent(in)           :: tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: criterion
  double precision, allocatable :: tmp_int(:,:), CS(:,:), tmp_mo_coef(:,:), tmp_mo_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
  integer                       :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho,nu,c
  double precision              :: t1,t2,t3

  print*,''
  print*,'---criterion_PM_v3---'
  
  call wall_time(t1)

  ! Allocation
  allocate(tmp_int(tmp_list_size, tmp_list_size),tmp_accu(tmp_list_size, tmp_list_size))
  allocate(CS(tmp_list_size,ao_num),tmp_mo_coef(ao_num,tmp_list_size))

  criterion = 0d0

  ! submatrix of the mo_coef
  do tmp_i = 1, tmp_list_size
    i = tmp_list(tmp_i)
    do j = 1, ao_num

      tmp_mo_coef(j,tmp_i) = mo_coef(j,i)
 
    enddo
  enddo

  ! ao_overlap(ao_num,ao_num)
  ! mo_coef(ao_num,mo_num)
  call dgemm('T','N',tmp_list_size,ao_num,ao_num,1d0,tmp_mo_coef,size(tmp_mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
 
  do a = 1, nucl_num ! loop over the nuclei
  
    do j = 1, tmp_list_size
      do i = 1, tmp_list_size
        tmp_int(i,j) = 0d0
      enddo
    enddo

    !do tmp_j = 1, tmp_list_size
    !  do tmp_i = 1, tmp_list_size
    !    do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
    !      mu = nucl_aos(a,b)

    !      tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_coef(mu,tmp_j) + tmp_mo_coef(mu,tmp_i) * CS(tmp_j,mu))

    !                             !  (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
    !                             !+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))

    !    enddo
    !  enddo
    !enddo

    allocate(tmp_mo_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))
 
    do tmp_i = 1, tmp_list_size
      do b = 1, nucl_n_aos(a)
        mu = nucl_aos(a,b)

        tmp_mo_coef2(b,tmp_i) = tmp_mo_coef(mu,tmp_i)

      enddo
    enddo
    
    do b = 1, nucl_n_aos(a)
      mu = nucl_aos(a,b)
      do tmp_i = 1, tmp_list_size

         tmp_CS(tmp_i,b) = CS(tmp_i,mu)

      enddo
    enddo   

    call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_coef2,size(tmp_mo_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
 
    ! Integrals
    do tmp_j = 1, tmp_list_size
      do tmp_i = 1, tmp_list_size

        tmp_int(tmp_i,tmp_j) = 0.5d0 * (tmp_accu(tmp_i,tmp_j) + tmp_accu(tmp_j,tmp_i))   

      enddo
    enddo

    deallocate(tmp_mo_coef2,tmp_CS)

    ! Criterion
    do tmp_i = 1, tmp_list_size
      criterion = criterion + tmp_int(tmp_i,tmp_i)**2
    enddo

  enddo

  criterion = - criterion 

  deallocate(tmp_int,CS,tmp_accu,tmp_mo_coef)

  call wall_time(t2)
  t3 = t2 - t1
  print*,'Time in criterion_PM_v3:', t3

  print*,'---End criterion_PM_v3---'

end

Criterion FB (old)

The criterion is just computed as

\begin{align*} C = - \sum_i^{mo_{num}} (<i|x|i>^2 + <i|y|i>^2 + <i|z|i>^2) \end{align*}

The minus sign is here in order to minimize this criterion

Output:

criterion double precision criterion for the Foster-Boys localization
subroutine criterion_FB_old(criterion)

  implicit none

  BEGIN_DOC
  ! Compute the Foster-Boys localization criterion
  END_DOC

  double precision, intent(out) :: criterion
  integer                       :: i

  ! Criterion (= \sum_i <i|r|i>^2 )
  criterion = 0d0
  do i = 1, mo_num
    criterion = criterion + mo_dipole_x(i,i)**2 + mo_dipole_y(i,i)**2 + mo_dipole_z(i,i)**2
  enddo
  criterion = - criterion

end subroutine

Criterion FB

subroutine criterion_FB(tmp_list_size, tmp_list, criterion)

  implicit none

  BEGIN_DOC
  ! Compute the Foster-Boys localization criterion
  END_DOC

  integer, intent(in)           :: tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(out) :: criterion
  integer                       :: i, tmp_i

  ! Criterion (= - \sum_i <i|r|i>^2 )
  criterion = 0d0
  do tmp_i = 1, tmp_list_size
    i = tmp_list(tmp_i)
    criterion = criterion + mo_dipole_x(i,i)**2 + mo_dipole_y(i,i)**2 + mo_dipole_z(i,i)**2
  enddo
  criterion = - criterion

end subroutine

Theta

In:

n integer number of MOs in the considered MO class
l integer list of MOs of the considered class

Out:

m_x(n,n) double precision Matrix containing the rotation angle between all the different
pairs of MOs to apply the rotations (need a minus sign)
max_elem double precision Maximal angle in absolute value

$$\cos(4 \theta) = \frac{-A{ij}}{\sqrt{(A_{ij}^2 + B_{ij}^2)} $$ $$\sin(4 \theta) = \frac{B{ij}}{\sqrt{(A_{ij}^2 + B_{ij}^2)} $$ $$\tan(4 \theta) = \frac{\sin(4 \theta)}{\cos(4 \theta)}$$ where $\theta$ is in fact $\theta_{ij}$

For Foster-Boys localization: $$A_{ij} = <i|r|j>^2 - \frac{1}{4} (<i|r|i> - <j|r|j>)^2$$ $$B_{ij} = <i|r|j> (<i|r|i> - <j|r|j>)$$

For Pipek-Mezey localization: $$A_{ij} = \sum_A <i|P_A|j>^2 - \frac{1}{4} (<i|P_A|i> - <j|P_A|j>)^2$$ $$B_{ij} = \sum_A <i|P_A|j> (<i|P_A|i> - <j|P_A|j>)$$ with $$<i|P_A|j> = \frac{1}{2} \sum_\rho \sum_{\mu \in A} ( c_\rho^{i*} S_{\rho \mu} c_\mu^j + c_\mu^{i*} S_{\mu \rho} c_\rho^j)$$ $i,j$ MOs $\mu, \rho$ AOs $A$ nucleus $S$ overlap matrix $c$ MO coefficient $r$ position operator

subroutine theta_FB(l, n, m_x, max_elem)

  include 'pi.h'

  BEGIN_DOC
  ! Compute the angles to minimize the Foster-Boys criterion by using pairwise rotations of the MOs
  ! Warning: you must give - the angles to build the rotation matrix...
  END_DOC

  implicit none

  integer, intent(in)           :: n, l(n)
  double precision, intent(out) :: m_x(n,n), max_elem

  integer                       :: i,j, tmp_i, tmp_j
  double precision, allocatable :: cos4theta(:,:), sin4theta(:,:)
  double precision, allocatable :: A(:,:), B(:,:), beta(:,:), gamma(:,:)
  integer                       :: idx_i,idx_j

  allocate(cos4theta(n, n), sin4theta(n, n))
  allocate(A(n,n), B(n,n), beta(n,n), gamma(n,n))

  do tmp_j = 1, n
    j = l(tmp_j)
    do tmp_i = 1, n
      i = l(tmp_i)
      A(tmp_i,tmp_j) = mo_dipole_x(i,j)**2 - 0.25d0 * (mo_dipole_x(i,i) - mo_dipole_x(j,j))**2 &
                     + mo_dipole_y(i,j)**2 - 0.25d0 * (mo_dipole_y(i,i) - mo_dipole_y(j,j))**2 &
                     + mo_dipole_z(i,j)**2 - 0.25d0 * (mo_dipole_z(i,i) - mo_dipole_z(j,j))**2
    enddo
    A(j,j) = 0d0
  enddo

  do tmp_j = 1, n
    j = l(tmp_j)
    do tmp_i = 1, n
      i = l(tmp_i)
      B(tmp_i,tmp_j) = mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
                     + mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
                     + mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j))
    enddo
  enddo

  !do tmp_j = 1, n
  !  j = l(tmp_j)
  !  do tmp_i = 1, n
  !    i = l(tmp_i)
  !    beta(tmp_i,tmp_j) =  (mo_dipole_x(i,i) - mo_dipole_x(j,j)) - 4d0 * mo_dipole_x(i,j)**2 &
  !               + (mo_dipole_y(i,i) - mo_dipole_y(j,j)) - 4d0 * mo_dipole_y(i,j)**2 &
  !               + (mo_dipole_z(i,i) - mo_dipole_z(j,j)) - 4d0 * mo_dipole_z(i,j)**2
  !  enddo
  !enddo

  !do tmp_j = 1, n
  !  j = l(tmp_j)
  !  do tmp_i = 1, n
  !    i = l(tmp_i)
  !    gamma(tmp_i,tmp_j) = 4d0 * ( mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
  !                       + mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
  !                       + mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j)))
  !  enddo
  !enddo

  !
  !do j = 1, n
  !  do i = 1, n
  !    cos4theta(i,j) = - A(i,j) / dsqrt(A(i,j)**2 + B(i,j)**2)
  !  enddo
  !enddo

  !do j = 1, n
  !  do i = 1, n
  !    sin4theta(i,j) = B(i,j) / dsqrt(A(i,j)**2 + B(i,j)**2)
  !  enddo
  !enddo

  ! Theta
  do j = 1, n
    do i = 1, n
      m_x(i,j) = 0.25d0 * atan2(B(i,j), -A(i,j))
      !m_x(i,j) = 0.25d0 * atan2(sin4theta(i,j), cos4theta(i,j))
    enddo
  enddo

  ! Enforce a perfect antisymmetry
  do j = 1, n-1
    do i = j+1, n
      m_x(j,i) = - m_x(i,j)
    enddo
  enddo
  do i = 1, n
    m_x(i,i) = 0d0
  enddo

  ! Max
  max_elem = 0d0
  do j = 1, n-1
    do i = j+1, n
      if (dabs(m_x(i,j)) > dabs(max_elem)) then
        max_elem = m_x(i,j)
        !idx_i = i
        !idx_j = j
      endif
    enddo
  enddo

  ! Debug
  !print*,''
  !print*,'sin/B'
  !do i = 1, n
  !  write(*,'(100F10.4)') sin4theta(i,:)
  !  !B(i,:)
  !enddo
  !print*,'cos/A'
  !do i = 1, n
  !  write(*,'(100F10.4)') cos4theta(i,:)
  !  !A(i,:)
  !enddo
  !print*,'X'
  !!m_x = 0d0
  !!m_x(idx_i,idx_j) = max_elem
  !!m_x(idx_j,idx_i) = -max_elem
  !do i = 1, n
  !  write(*,'(100F10.4)') m_x(i,:)
  !enddo
  !print*,idx_i,idx_j,max_elem

  max_elem = dabs(max_elem)
  
  deallocate(cos4theta, sin4theta)
  deallocate(A,B,beta,gamma)
  
end
subroutine theta_PM(l, n, m_x, max_elem)
  
  include 'pi.h'

  BEGIN_DOC
  ! Compute the angles to minimize the Foster-Boys criterion by using pairwise rotations of the MOs
  ! Warning: you must give - the angles to build the rotation matrix...
  END_DOC

  implicit none

  integer, intent(in)           :: n, l(n)
  double precision, intent(out) :: m_x(n,n), max_elem

  integer                       :: a,b,i,j,tmp_i,tmp_j,rho,mu,nu,idx_i,idx_j
  double precision, allocatable :: Aij(:,:), Bij(:,:), Pa(:,:)

  allocate(Aij(n,n), Bij(n,n), Pa(n,n))

  do a = 1, nucl_num ! loop over the nuclei
    Pa = 0d0 ! Initialization for each nuclei

    ! Loop over the MOs of the a given mo_class to compute <i|P_a|j>
    do tmp_j = 1, n
      j = l(tmp_j) 
      do tmp_i = 1, n
         i = l(tmp_i)
        do rho = 1, ao_num ! loop over all the AOs
          do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
            mu = nucl_aos(a,b) ! AO centered on atom a 

            Pa(tmp_i,tmp_j) = Pa(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
                                   + mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))

          enddo
        enddo  
      enddo
    enddo

    ! A
    do j = 1, n
      do i = 1, n
        Aij(i,j) = Aij(i,j) + Pa(i,j)**2 - 0.25d0 * (Pa(i,i) - Pa(j,j))**2
      enddo
    enddo
    
    ! B
    do j = 1, n
      do i = 1, n
        Bij(i,j) = Bij(i,j) + Pa(i,j) * (Pa(i,i) - Pa(j,j))
      enddo
    enddo

  enddo

  ! Theta
  do j = 1, n
    do i = 1, n
      m_x(i,j) = 0.25d0 * atan2(Bij(i,j), -Aij(i,j))
    enddo
  enddo

  ! Enforce a perfect antisymmetry
  do j = 1, n-1
    do i = j+1, n
      m_x(j,i) = - m_x(i,j)
    enddo
  enddo
  do i = 1, n
    m_x(i,i) = 0d0
  enddo

  ! Max
  max_elem = 0d0
  do j = 1, n-1
    do i = j+1, n
      if (dabs(m_x(i,j)) > dabs(max_elem)) then
        max_elem = m_x(i,j)
        idx_i = i
        idx_j = j
      endif
    enddo
  enddo

  ! Debug
  !do i = 1, n
  !  write(*,'(100F10.4)') m_x(i,:)
  !enddo
  !print*,'Max',idx_i,idx_j,max_elem

  max_elem = dabs(max_elem)

  deallocate(Aij,Bij,Pa)

end

Spatial extent

The spatial extent of an orbital $i$ is computed as

\begin{align*} \sum_{\lambda=x,y,z}\sqrt{<i|\lambda^2|i> - <i|\lambda|i>^2} \end{align*}

From that we can also compute the average and the standard deviation

subroutine compute_spatial_extent(spatial_extent)

  implicit none

  BEGIN_DOC
  ! Compute the spatial extent of the MOs
  END_DOC
 
  double precision, intent(out) :: spatial_extent(mo_num)
  double precision              :: average_core, average_act, average_inact, average_virt
  double precision              :: std_var_core, std_var_act, std_var_inact, std_var_virt
  integer                       :: i,j,k,l

  spatial_extent = 0d0
  
  do i = 1, mo_num
    spatial_extent(i) = mo_spread_x(i,i) - mo_dipole_x(i,i)**2
  enddo
  do i = 1, mo_num
    spatial_extent(i) = spatial_extent(i) + mo_spread_y(i,i) - mo_dipole_y(i,i)**2
  enddo
  do i = 1, mo_num
    spatial_extent(i) = spatial_extent(i) + mo_spread_z(i,i) - mo_dipole_z(i,i)**2
  enddo

  do i = 1, mo_num
    spatial_extent(i) = dsqrt(spatial_extent(i))
  enddo

  average_core = 0d0
  std_var_core = 0d0
  if (dim_list_core_orb >= 2) then
    call compute_average_sp_ext(spatial_extent, list_core, dim_list_core_orb, average_core)
    call compute_std_var_sp_ext(spatial_extent, list_core, dim_list_core_orb, average_core, std_var_core)
  endif

  average_act = 0d0
  std_var_act = 0d0
  if (dim_list_act_orb >= 2) then
    call compute_average_sp_ext(spatial_extent, list_act, dim_list_act_orb, average_act)
    call compute_std_var_sp_ext(spatial_extent, list_act, dim_list_act_orb, average_act, std_var_act)
  endif
  
  average_inact = 0d0
  std_var_inact = 0d0
  if (dim_list_inact_orb >= 2) then
    call compute_average_sp_ext(spatial_extent, list_inact, dim_list_inact_orb, average_inact)
    call compute_std_var_sp_ext(spatial_extent, list_inact, dim_list_inact_orb, average_inact, std_var_inact)
  endif

  average_virt = 0d0
  std_var_virt = 0d0
  if (dim_list_virt_orb >= 2) then
    call compute_average_sp_ext(spatial_extent, list_virt, dim_list_virt_orb, average_virt)
    call compute_std_var_sp_ext(spatial_extent, list_virt, dim_list_virt_orb, average_virt, std_var_virt)
  endif

  print*,''
  print*,'============================='
  print*,'  Spatial extent of the MOs'
  print*,'============================='
  print*,''

  print*, 'elec_num:', elec_num
  print*, 'elec_alpha_num:', elec_alpha_num
  print*, 'elec_beta_num:', elec_beta_num
  print*, 'core:', dim_list_core_orb
  print*, 'act:', dim_list_act_orb
  print*, 'inact:', dim_list_inact_orb
  print*, 'virt:', dim_list_virt_orb
  print*, 'mo_num:', mo_num
  print*,''
   
  print*,'-- Core MOs --'
  print*,'Average:', average_core
  print*,'Std var:', std_var_core
  print*,''
  
  print*,'-- Active MOs --'
  print*,'Average:', average_act
  print*,'Std var:', std_var_act
  print*,''

  print*,'-- Inactive MOs --'
  print*,'Average:', average_inact
  print*,'Std var:', std_var_inact
  print*,''

  print*,'-- Virtual MOs --'
  print*,'Average:', average_virt
  print*,'Std var:', std_var_virt
  print*,''

  print*,'Spatial extent:'
  do i = 1, mo_num
    print*, i, spatial_extent(i)
  enddo

end
subroutine compute_average_sp_ext(spatial_extent, list, list_size, average)

  implicit none
  
  BEGIN_DOC
  ! Compute the average spatial extent of the MOs
  END_DOC

  integer, intent(in) :: list_size, list(list_size)
  double precision, intent(in) :: spatial_extent(mo_num)
  double precision, intent(out) :: average
  integer :: i, tmp_i
  
  average = 0d0
  do tmp_i = 1, list_size
    i = list(tmp_i)
    average = average + spatial_extent(i)
  enddo

  average = average / DBLE(list_size)

end
subroutine compute_std_var_sp_ext(spatial_extent, list, list_size, average, std_var)

  implicit none

  BEGIN_DOC
  ! Compute the standard deviation of the spatial extent of the MOs
  END_DOC

  integer, intent(in)           :: list_size, list(list_size)
  double precision, intent(in)  :: spatial_extent(mo_num)
  double precision, intent(in)  :: average
  double precision, intent(out) :: std_var
  integer                       :: i, tmp_i

  std_var = 0d0

  do tmp_i = 1, list_size
    i = list(tmp_i)
    std_var = std_var + (spatial_extent(i) - average)**2
  enddo
  
  std_var = dsqrt(1d0/DBLE(list_size) * std_var)

end

Utils

subroutine apply_pre_rotation()

  implicit none

  BEGIN_DOC
  ! Apply a rotation between the MOs
  END_DOC

  double precision, allocatable :: pre_rot(:,:), prev_mos(:,:), R(:,:)
  double precision              :: t1,t2,t3
  integer                       :: i,j,tmp_i,tmp_j
  integer                       :: info
  logical                       :: enforce_step_cancellation

  print*,'---apply_pre_rotation---'
  call wall_time(t1)

  allocate(pre_rot(mo_num,mo_num), prev_mos(ao_num,mo_num), R(mo_num,mo_num))

  ! Initialization of the matrix
  pre_rot = 0d0

  if (kick_in_mos) then
    ! Pre rotation for core MOs
    if (dim_list_core_orb >= 2) then
      do tmp_j = 1, dim_list_core_orb
        j = list_core(tmp_j)
        do tmp_i = 1, dim_list_core_orb
          i = list_core(tmp_i)
          if (i > j) then
            pre_rot(i,j) = angle_pre_rot
          elseif (i < j) then
            pre_rot(i,j) = - angle_pre_rot
          else
            pre_rot(i,j) = 0d0
          endif
        enddo
      enddo
    endif
    
    ! Pre rotation for active MOs
    if (dim_list_act_orb >= 2) then
      do tmp_j = 1, dim_list_act_orb
        j = list_act(tmp_j)
        do tmp_i = 1, dim_list_act_orb
          i = list_act(tmp_i)
          if (i > j) then
            pre_rot(i,j) = angle_pre_rot
          elseif (i < j) then
            pre_rot(i,j) = - angle_pre_rot
          else
            pre_rot(i,j) = 0d0
          endif
        enddo
      enddo
    endif
  
    ! Pre rotation for inactive MOs
    if (dim_list_inact_orb >= 2) then
      do tmp_j = 1, dim_list_inact_orb
        j = list_inact(tmp_j)
        do tmp_i = 1, dim_list_inact_orb
          i = list_inact(tmp_i)
          if (i > j) then
            pre_rot(i,j) = angle_pre_rot
          elseif (i < j) then
            pre_rot(i,j) = - angle_pre_rot
          else
            pre_rot(i,j) = 0d0
          endif
        enddo
      enddo
    endif
  
    ! Pre rotation for virtual MOs
    if (dim_list_virt_orb >= 2) then
      do tmp_j = 1, dim_list_virt_orb
        j = list_virt(tmp_j)
        do tmp_i = 1, dim_list_virt_orb
          i = list_virt(tmp_i)
          if (i > j) then
            pre_rot(i,j) = angle_pre_rot
          elseif (i < j) then
            pre_rot(i,j) = - angle_pre_rot
          else
            pre_rot(i,j) = 0d0
          endif
        enddo
      enddo
    endif
  
    ! Nothing for deleted ones
  
    ! Compute pre rotation matrix from pre_rot
    call rotation_matrix(pre_rot,mo_num,R,mo_num,mo_num,info,enforce_step_cancellation)
   
    if (enforce_step_cancellation) then
      print*, 'Cancellation of the pre rotation, too big error in the rotation matrix'
      print*, 'Reduce the angle for the pre rotation, abort'
      call abort
    endif
  
    ! New Mos (we don't car eabout the previous MOs prev_mos)
    call apply_mo_rotation(R,prev_mos)
  
    ! Update the things related to mo_coef
    TOUCH mo_coef
    call save_mos
  endif

  deallocate(pre_rot, prev_mos, R)

  call wall_time(t2)
  t3 = t2-t1
  print*,'Time in apply_pre_rotation:', t3
  print*,'---End apply_pre_rotation---'

end
subroutine x_tmp_orb_loc_v2(tmp_n, tmp_list_size, tmp_list, v_grad, H,tmp_x, tmp_m_x)

  implicit none

  integer, intent(in)           :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
  double precision, intent(in)  :: v_grad(tmp_n)
  double precision, intent(in)  :: H(tmp_n, tmp_n)
  double precision, intent(out) :: tmp_m_x(tmp_list_size, tmp_list_size), tmp_x(tmp_list_size)
  !double precision, allocatable :: x(:)
  double precision              :: lambda , accu, max_elem
  integer                       :: i,j,tmp_i,tmp_j,tmp_k

  ! Allocation
  !allocate(x(tmp_n))

  ! Level shifted hessian
  lambda = 0d0
  do tmp_k = 1, tmp_n
    if (H(tmp_k,tmp_k) < lambda) then
      lambda = H(tmp_k,tmp_k)
    endif
  enddo

  ! min element in the hessian
  if (lambda < 0d0) then
    lambda = -lambda + 1d-6
  endif  
  
  print*, 'lambda', lambda
 
  ! Good
  do tmp_k = 1, tmp_n
    if (ABS(H(tmp_k,tmp_k)) > 1d-6) then
       tmp_x(tmp_k) = - 1d0/(ABS(H(tmp_k,tmp_k))+lambda) * v_grad(tmp_k)!(-v_grad(tmp_k))
      !x(tmp_k) = - 1d0/(ABS(H(tmp_k,tmp_k))+lambda) * (-v_grad(tmp_k)) 
    endif
  enddo

  ! 1D tmp -> 2D tmp 
  tmp_m_x = 0d0
  do tmp_j = 1, tmp_list_size - 1
    do tmp_i = tmp_j + 1, tmp_list_size
      call mat_to_vec_index(tmp_i,tmp_j,tmp_k)
      tmp_m_x(tmp_i, tmp_j) = tmp_x(tmp_k)!x(tmp_k)
    enddo
  enddo

  ! Antisym
  do tmp_i = 1, tmp_list_size - 1
    do tmp_j = tmp_i + 1, tmp_list_size
      tmp_m_x(tmp_i,tmp_j) = - tmp_m_x(tmp_j,tmp_i) 
    enddo
  enddo

  ! Deallocation
  !deallocate(x)

end subroutine
subroutine ao_to_mo_no_sym(A_ao,LDA_ao,A_mo,LDA_mo)
  implicit none
  BEGIN_DOC
  ! Transform A from the |AO| basis to the |MO| basis
  !
  ! $C^\dagger.A_{ao}.C$
  END_DOC
  integer, intent(in)            :: LDA_ao,LDA_mo
  double precision, intent(in)   :: A_ao(LDA_ao,ao_num)
  double precision, intent(out)  :: A_mo(LDA_mo,mo_num)
  double precision, allocatable  :: T(:,:)

  allocate ( T(ao_num,mo_num) )
  !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T

  call dgemm('N','N', ao_num, mo_num, ao_num,                    &
      1.d0, A_ao,LDA_ao,                                             &
      mo_coef, size(mo_coef,1),                                      &
      0.d0, T, size(T,1))

  call dgemm('T','N', mo_num, mo_num, ao_num,                &
      1.d0, mo_coef,size(mo_coef,1),                                 &
      T, ao_num,                                                     &
      0.d0, A_mo, size(A_mo,1))

  deallocate(T)
end
subroutine run_sort_by_fock_energies()
  
  implicit none
  
  BEGIN_DOC
  ! Saves the current MOs ordered by diagonal element of the Fock operator.
  END_DOC
  
  integer                        :: i,j,k,l,tmp_i,tmp_k,tmp_list_size
  integer, allocatable           :: iorder(:), tmp_list(:)
  double precision, allocatable  :: fock_energies_tmp(:), tmp_mo_coef(:,:)

  ! Test
  do l = 1, 4
    if (l==1) then ! core
      tmp_list_size = dim_list_core_orb
    elseif (l==2) then ! act
      tmp_list_size = dim_list_act_orb
    elseif (l==3) then ! inact
      tmp_list_size = dim_list_inact_orb
    else ! virt
      tmp_list_size = dim_list_virt_orb
    endif

    if (tmp_list_size >= 2) then
      ! Allocation tmp array
      allocate(tmp_list(tmp_list_size))

      ! To give the list of MOs in a mo_class
      if (l==1) then ! core
        tmp_list = list_core
      elseif (l==2) then
        tmp_list = list_act
      elseif (l==3) then
        tmp_list = list_inact
      else
        tmp_list = list_virt
      endif
      print*,'MO class: ',trim(mo_class(tmp_list(1)))

      allocate(iorder(tmp_list_size), fock_energies_tmp(tmp_list_size), tmp_mo_coef(ao_num,tmp_list_size))
      !print*,'MOs before sorting them by f_p^p energies:'
      do i = 1, tmp_list_size
        tmp_i = tmp_list(i)
        fock_energies_tmp(i) = Fock_matrix_diag_mo(tmp_i)
        iorder(i) = i
        !print*, tmp_i, fock_energies_tmp(i)
      enddo
  
      call dsort(fock_energies_tmp, iorder, tmp_list_size)
      
      print*,'MOs after sorting them by f_p^p energies:'
      do i = 1, tmp_list_size
        k = iorder(i)
        tmp_k = tmp_list(k)
        print*, tmp_k, fock_energies_tmp(k)
        do j = 1, ao_num
          tmp_mo_coef(j,k) = mo_coef(j,tmp_k)
        enddo
      enddo

      ! Update the MOs after sorting them by energies
      do i = 1, tmp_list_size
        tmp_i = tmp_list(i)
        do j = 1, ao_num
          mo_coef(j,tmp_i) = tmp_mo_coef(j,i)
        enddo
      enddo

      if (debug_hf) then
        touch mo_coef
        print*,'HF energy:', HF_energy
      endif
      print*,''
      
      deallocate(iorder, fock_energies_tmp, tmp_list, tmp_mo_coef)
    endif

  enddo

  touch mo_coef
  call save_mos
  
end
function is_core(i)

  implicit none

  BEGIN_DOC
  ! True if the orbital i is a core orbital
  END_DOC

  integer, intent(in) :: i
  logical             :: is_core

  integer             :: j

  ! Init
  is_core = .False.

  ! Search
  do j = 1, dim_list_core_orb
    if (list_core(j) == i) then
      is_core = .True.
      exit
    endif
  enddo

end

function is_del(i)

  implicit none

  BEGIN_DOC
  ! True if the orbital i is a deleted orbital
  END_DOC

  integer, intent(in) :: i
  logical             :: is_del

  integer             :: j

  ! Init
  is_del = .False.

  ! Search
  do j = 1, dim_list_core_orb
    if (list_core(j) == i) then
      is_del = .True.
      exit
    endif
  enddo

end

subroutine set_classes_loc()

  implicit none

  integer :: i
  logical :: ok1, ok2
  logical :: is_core, is_del
  integer(bit_kind) :: res(N_int,2)

  if (auto_mo_class) then
    do i = 1, mo_num
      if (is_core(i)) cycle
      if (is_del(i)) cycle
      call apply_hole(psi_det(1,1,1), 1, i, res, ok1, N_int)
      call apply_hole(psi_det(1,1,1), 2, i, res, ok2, N_int)
      if (ok1 .and. ok2) then
        mo_class(i) = 'Inactive'
      else if (.not. ok1 .and. .not. ok2) then
        mo_class(i) = 'Virtual'
      else
        mo_class(i) = 'Active'
      endif
    enddo
    touch mo_class
  endif
  
end

subroutine unset_classes_loc()

  implicit none

  integer :: i
  logical :: ok1, ok2
  logical :: is_core, is_del
  integer(bit_kind) :: res(N_int,2)

  if (auto_mo_class) then
    do i = 1, mo_num
      if (is_core(i)) cycle
      if (is_del(i)) cycle
      mo_class(i) = 'Active'
    enddo
    touch mo_class
  endif

end