qp2/src/iterations/print_summary.irp.f

105 lines
4.3 KiB
Fortran

subroutine print_summary(e_,pt2_data,pt2_data_err,n_det_,n_configuration_,n_st,s2_)
use selection_types
implicit none
BEGIN_DOC
! Print the extrapolated energy in the output
END_DOC
integer, intent(in) :: n_det_, n_configuration_, n_st
double precision, intent(in) :: e_(n_st), s2_(n_st)
type(pt2_type) , intent(in) :: pt2_data, pt2_data_err
integer :: i, k
integer :: N_states_p
character*(9) :: pt2_string
character*(512) :: fmt
if (do_pt2) then
pt2_string = ' '
else
pt2_string = '(approx)'
endif
N_states_p = min(N_det_,n_st)
print *, ''
print '(A,I12)', 'Summary at N_det = ', N_det_
print '(A)', '-----------------------------------'
print *, ''
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
write(fmt,*) '(13X,', N_states_p, '(6X,A7,1X,I6,10X))'
write(*,fmt) ('State',k, k=1,N_states_p)
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
write(fmt,*) '(A13,', N_states_p, '(1X,F14.8,15X))'
write(*,fmt) '# E ', e_(1:N_states_p)
if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', e_(1:N_states_p)-e_(1)
write(*,fmt) '# Excit. (eV)', (e_(1:N_states_p)-e_(1))*27.211396641308d0
endif
write(fmt,*) '(A13,', 2*N_states_p, '(1X,F14.8))'
write(*,fmt) '# PT2 '//pt2_string, (pt2_data % pt2(k), pt2_data_err % pt2(k), k=1,N_states_p)
write(*,fmt) '# rPT2'//pt2_string, (pt2_data % rpt2(k), pt2_data_err % rpt2(k), k=1,N_states_p)
write(*,'(A)') '#'
write(*,fmt) '# E+PT2 ', (e_(k)+pt2_data % pt2(k),pt2_data_err % pt2(k), k=1,N_states_p)
write(*,fmt) '# E+rPT2 ', (e_(k)+pt2_data % rpt2(k),pt2_data_err % rpt2(k), k=1,N_states_p)
if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', ( (e_(k)+pt2_data % pt2(k)-e_(1)-pt2_data % pt2(1)), &
dsqrt(pt2_data_err % pt2(k)*pt2_data_err % pt2(k)+pt2_data_err % pt2(1)*pt2_data_err % pt2(1)), k=1,N_states_p)
write(*,fmt) '# Excit. (eV)', ( (e_(k)+pt2_data % pt2(k)-e_(1)-pt2_data % pt2(1))*27.211396641308d0, &
dsqrt(pt2_data_err % pt2(k)*pt2_data_err % pt2(k)+pt2_data_err % pt2(1)*pt2_data_err % pt2(1))*27.211396641308d0, k=1,N_states_p)
endif
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
print *, ''
print *, 'N_det = ', N_det_
print *, 'N_states = ', n_st
if (s2_eig) then
print *, 'N_cfg = ', N_configuration_
if (only_expected_s2) then
print *, 'N_csf = ', N_csf
endif
endif
print *, ''
do k=1, N_states_p
print*,'* State ',k
print *, '< S^2 > = ', s2_(k)
print *, 'E = ', e_(k)
print *, 'Variance = ', pt2_data % variance(k), ' +/- ', pt2_data_err % variance(k)
print *, 'PT norm = ', dsqrt(pt2_data % overlap(k,k)), ' +/- ', 0.5d0*dsqrt(pt2_data % overlap(k,k)) * pt2_data_err % overlap(k,k) / (pt2_data % overlap(k,k))
print *, 'PT2 = ', pt2_data % pt2(k), ' +/- ', pt2_data_err % pt2(k)
print *, 'rPT2 = ', pt2_data % rpt2(k), ' +/- ', pt2_data_err % rpt2(k)
print *, 'E+PT2 '//pt2_string//' = ', e_(k)+pt2_data % pt2(k), ' +/- ', pt2_data_err % pt2(k)
print *, 'E+rPT2'//pt2_string//' = ', e_(k)+pt2_data % rpt2(k), ' +/- ', pt2_data_err % rpt2(k)
print *, ''
enddo
print *, '-----'
if(n_st.gt.1)then
print *, 'Variational Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (e_(i) - e_(1)), &
(e_(i) - e_(1)) * 27.211396641308d0
enddo
print *, '-----'
print*, 'Variational + perturbative Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (e_(i)+ pt2_data % pt2(i) - (e_(1) + pt2_data % pt2(1))), &
(e_(i)+ pt2_data % pt2(i) - (e_(1) + pt2_data % pt2(1))) * 27.211396641308d0
enddo
print *, '-----'
print*, 'Variational + renormalized perturbative Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (e_(i)+ pt2_data % rpt2(i) - (e_(1) + pt2_data % rpt2(1))), &
(e_(i)+ pt2_data % rpt2(i) - (e_(1) + pt2_data % rpt2(1))) * 27.211396641308d0
enddo
endif
! call print_energy_components()
end subroutine