qp2/src/dft_utils_in_r/dm_in_r.irp.f

117 lines
5.7 KiB
Fortran

BEGIN_PROVIDER [double precision, one_e_dm_and_grad_alpha_in_r, (4,n_points_final_grid,N_states) ]
&BEGIN_PROVIDER [double precision, one_e_dm_and_grad_beta_in_r, (4,n_points_final_grid,N_states) ]
&BEGIN_PROVIDER [double precision, one_e_grad_2_dm_alpha_at_r, (n_points_final_grid,N_states) ]
&BEGIN_PROVIDER [double precision, one_e_grad_2_dm_beta_at_r, (n_points_final_grid,N_states) ]
&BEGIN_PROVIDER [double precision, scal_prod_grad_one_e_dm_ab, (n_points_final_grid,N_states) ]
&BEGIN_PROVIDER [double precision, one_e_stuff_for_pbe, (3,n_points_final_grid,N_states) ]
BEGIN_DOC
! one_e_dm_and_grad_alpha_in_r(1,i,i_state) = d\dx n_alpha(r_i,istate)
!
! one_e_dm_and_grad_alpha_in_r(2,i,i_state) = d\dy n_alpha(r_i,istate)
!
! one_e_dm_and_grad_alpha_in_r(3,i,i_state) = d\dz n_alpha(r_i,istate)
!
! one_e_dm_and_grad_alpha_in_r(4,i,i_state) = n_alpha(r_i,istate)
!
! one_e_grad_2_dm_alpha_at_r(i,istate) = (d\dx n_alpha(r_i,istate))^2 + (d\dy n_alpha(r_i,istate))^2 + (d\dz n_alpha(r_i,istate))^2
!
! scal_prod_grad_one_e_dm_ab(i,istate) = grad n_alpha(r_i) . grad n_beta(r_i)
!
! where r_i is the ith point of the grid and istate is the state number
!
! !!!!! WARNING !!!! if no_core_density = .True. then all core electrons are removed
END_DOC
implicit none
integer :: i,j,k,l,m,istate
double precision :: contrib
double precision :: r(3)
double precision, allocatable :: aos_array(:),grad_aos_array(:,:)
double precision, allocatable :: dm_a(:),dm_b(:), dm_a_grad(:,:), dm_b_grad(:,:)
allocate(dm_a(N_states),dm_b(N_states), dm_a_grad(3,N_states), dm_b_grad(3,N_states))
allocate(aos_array(ao_num),grad_aos_array(3,ao_num))
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP SHARED(n_points_final_grid,final_grid_points,N_states, &
!$OMP one_e_dm_and_grad_alpha_in_r,one_e_dm_and_grad_beta_in_r, &
!$OMP one_e_grad_2_dm_alpha_at_r,one_e_grad_2_dm_beta_at_r, &
!$OMP scal_prod_grad_one_e_dm_ab,one_e_stuff_for_pbe) &
!$OMP PRIVATE (istate,i,r,dm_a,dm_b,dm_a_grad,dm_b_grad,aos_array, grad_aos_array)
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
call density_and_grad_alpha_beta_and_all_aos_and_grad_aos_at_r(r,dm_a,dm_b, dm_a_grad, dm_b_grad, aos_array, grad_aos_array)
! alpha/beta density
dm_a(istate) = max(dm_a(istate),1.d-12)
dm_b(istate) = max(dm_b(istate),1.d-12)
one_e_dm_and_grad_alpha_in_r(4,i,istate) = dm_a(istate)
one_e_dm_and_grad_beta_in_r(4,i,istate) = dm_b(istate)
! alpha/beta density gradients
one_e_dm_and_grad_alpha_in_r(1,i,istate) = dm_a_grad(1,istate)
one_e_dm_and_grad_alpha_in_r(2,i,istate) = dm_a_grad(2,istate)
one_e_dm_and_grad_alpha_in_r(3,i,istate) = dm_a_grad(3,istate)
one_e_dm_and_grad_beta_in_r(1,i,istate) = dm_b_grad(1,istate)
one_e_dm_and_grad_beta_in_r(2,i,istate) = dm_b_grad(2,istate)
one_e_dm_and_grad_beta_in_r(3,i,istate) = dm_b_grad(3,istate)
! alpha/beta squared of the gradients
one_e_grad_2_dm_alpha_at_r(i,istate) = dm_a_grad(1,istate) * dm_a_grad(1,istate) &
+ dm_a_grad(2,istate) * dm_a_grad(2,istate) &
+ dm_a_grad(3,istate) * dm_a_grad(3,istate)
one_e_grad_2_dm_beta_at_r(i,istate) = dm_b_grad(1,istate) * dm_b_grad(1,istate) &
+ dm_b_grad(2,istate) * dm_b_grad(2,istate) &
+ dm_b_grad(3,istate) * dm_b_grad(3,istate)
! scalar product between alpha and beta density gradient
scal_prod_grad_one_e_dm_ab(i,istate) = dm_a_grad(1,istate) * dm_b_grad(1,istate) &
+ dm_a_grad(2,istate) * dm_b_grad(2,istate) &
+ dm_a_grad(3,istate) * dm_b_grad(3,istate)
! some stuffs needed for GGA type potentials
one_e_stuff_for_pbe(1,i,istate) = 2.D0 * (dm_a_grad(1,istate) + dm_b_grad(1,istate) ) &
* (dm_a(istate) + dm_b(istate))
one_e_stuff_for_pbe(2,i,istate) = 2.D0 * (dm_a_grad(2,istate) + dm_b_grad(2,istate) ) &
* (dm_a(istate) + dm_b(istate))
one_e_stuff_for_pbe(3,i,istate) = 2.D0 * (dm_a_grad(3,istate) + dm_b_grad(3,istate) ) &
* (dm_a(istate) + dm_b(istate))
enddo
enddo
!$OMP END PARALLEL DO
! print*,'density and gradients provided'
END_PROVIDER
BEGIN_PROVIDER [double precision, elec_beta_num_grid_becke , (N_states) ]
&BEGIN_PROVIDER [double precision, elec_alpha_num_grid_becke , (N_states) ]
&BEGIN_PROVIDER [double precision, elec_num_grid_becke , (N_states) ]
implicit none
BEGIN_DOC
! number of electrons when the one-e alpha/beta densities are numerically integrated on the DFT grid
!
! !!!!! WARNING !!!! if no_core_density = .True. then all core electrons are removed
END_DOC
integer :: i,istate
double precision :: r(3),weight
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
elec_alpha_num_grid_becke(istate) += one_e_dm_and_grad_alpha_in_r(4,i,istate) * weight
elec_beta_num_grid_becke(istate) += one_e_dm_and_grad_beta_in_r(4,i,istate) * weight
enddo
elec_num_grid_becke(istate) = elec_alpha_num_grid_becke(istate) + elec_beta_num_grid_becke(istate)
enddo
END_PROVIDER