qp2/src/determinants/two_e_density_matrix.irp.pouet

610 lines
19 KiB
Plaintext

BEGIN_PROVIDER [double precision, two_bod_alpha_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none
BEGIN_DOC
! two_bod_alpha_beta(i,j,k,l) = <Psi| a^{dagger}_{j,alpha} a^{dagger}_{l,beta} a_{k,beta} a_{i,alpha} | Psi>
! 1 1 2 2 = chemist notations
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
!
END_DOC
integer :: dim1,dim2,dim3,dim4
double precision :: cpu_0,cpu_1
dim1 = mo_num
dim2 = mo_num
dim3 = mo_num
dim4 = mo_num
two_bod_alpha_beta_mo = 0.d0
print*,'providing two_bod_alpha_beta ...'
call wall_time(cpu_0)
call two_body_dm_nstates_openmp(two_bod_alpha_beta_mo,dim1,dim2,dim3,dim4,psi_coef,size(psi_coef,2),size(psi_coef,1))
call wall_time(cpu_1)
print*,'two_bod_alpha_beta provided in',dabs(cpu_1-cpu_0)
integer :: ii,jj,i,j,k,l
if(no_core_density .EQ. "no_core_dm")then
print*,'USING THE VALENCE ONLY TWO BODY DENSITY'
do ii = 1, n_core_orb ! 1
i = list_core(ii)
do j = 1, mo_num ! 2
do k = 1, mo_num ! 1
do l = 1, mo_num ! 2
! 2 2 1 1
two_bod_alpha_beta_mo(l,j,k,i,:) = 0.d0
two_bod_alpha_beta_mo(j,l,k,i,:) = 0.d0
two_bod_alpha_beta_mo(l,j,i,k,:) = 0.d0
two_bod_alpha_beta_mo(j,l,i,k,:) = 0.d0
two_bod_alpha_beta_mo(k,i,l,j,:) = 0.d0
two_bod_alpha_beta_mo(k,i,j,l,:) = 0.d0
two_bod_alpha_beta_mo(i,k,l,j,:) = 0.d0
two_bod_alpha_beta_mo(i,k,j,l,:) = 0.d0
enddo
enddo
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [double precision, two_bod_alpha_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none
BEGIN_DOC
! two_bod_alpha_beta_mo_physicist,(i,j,k,l) = <Psi| a^{dagger}_{k,alpha} a^{dagger}_{l,beta} a_{j,beta} a_{i,alpha} | Psi>
! 1 2 1 2 = physicist notations
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
!
END_DOC
integer :: i,j,k,l,istate
double precision :: cpu_0,cpu_1
two_bod_alpha_beta_mo_physicist = 0.d0
print*,'providing two_bod_alpha_beta_mo_physicist ...'
call wall_time(cpu_0)
do istate = 1, N_states
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
! 1 2 1 2 1 1 2 2
two_bod_alpha_beta_mo_physicist(l,k,i,j,istate) = two_bod_alpha_beta_mo(i,l,j,k,istate)
enddo
enddo
enddo
enddo
enddo
call wall_time(cpu_1)
print*,'two_bod_alpha_beta_mo_physicist provided in',dabs(cpu_1-cpu_0)
END_PROVIDER
subroutine two_body_dm_nstates_openmp(big_array,dim1,dim2,dim3,dim4,u_0,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
integer, intent(in) :: N_st,sze
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: u_0(sze,N_st)
integer :: k
double precision, allocatable :: u_t(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
allocate(u_t(N_st,N_det))
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
enddo
call dtranspose( &
u_0, &
size(u_0, 1), &
u_t, &
size(u_t, 1), &
N_det, N_st)
call two_body_dm_nstates_openmp_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1)
deallocate(u_t)
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
enddo
end
subroutine two_body_dm_nstates_openmp_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
!
! Default should be 1,N_det,0,1
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
double precision, intent(in) :: u_t(N_st,N_det)
PROVIDE N_int
select case (N_int)
case (1)
call two_body_dm_nstates_openmp_work_1(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (2)
call two_body_dm_nstates_openmp_work_2(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (3)
call two_body_dm_nstates_openmp_work_3(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (4)
call two_body_dm_nstates_openmp_work_4(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case default
call two_body_dm_nstates_openmp_work_N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
end select
end
BEGIN_TEMPLATE
subroutine two_body_dm_nstates_openmp_work_$N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
double precision, intent(in) :: u_t(N_st,N_det)
double precision :: hij, sij
integer :: i,j,k,l
integer :: k_a, k_b, l_a, l_b, m_a, m_b
integer :: istate
integer :: krow, kcol, krow_b, kcol_b
integer :: lrow, lcol
integer :: mrow, mcol
integer(bit_kind) :: spindet($N_int)
integer(bit_kind) :: tmp_det($N_int,2)
integer(bit_kind) :: tmp_det2($N_int,2)
integer(bit_kind) :: tmp_det3($N_int,2)
integer(bit_kind), allocatable :: buffer(:,:)
integer :: n_doubles
integer, allocatable :: doubles(:)
integer, allocatable :: singles_a(:)
integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:)
integer :: maxab, n_singles_a, n_singles_b, kcol_prev, nmax
integer*8 :: k8
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
allocate(idx0(maxab))
do i=1,maxab
idx0(i) = i
enddo
! Prepare the array of all alpha single excitations
! -------------------------------------------------
PROVIDE N_int nthreads_davidson
! Alpha/Beta double excitations
! =============================
allocate( buffer($N_int,maxab), &
singles_a(maxab), &
singles_b(maxab), &
doubles(maxab), &
idx(maxab))
kcol_prev=-1
ASSERT (iend <= N_det)
ASSERT (istart > 0)
ASSERT (istep > 0)
do k_a=istart+ishift,iend,istep
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
if (kcol /= kcol_prev) then
call get_all_spin_singles_$N_int( &
psi_det_beta_unique, idx0, &
tmp_det(1,2), N_det_beta_unique, &
singles_b, n_singles_b)
endif
kcol_prev = kcol
! Loop over singly excited beta columns
! -------------------------------------
do i=1,n_singles_b
lcol = singles_b(i)
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det)
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
ASSERT (l_a <= N_det)
idx(j) = l_a
l_a = l_a+1
enddo
j = j-1
call get_all_spin_singles_$N_int( &
buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a )
! Loop over alpha singles
! -----------------------
do k = 1,n_singles_a
l_a = singles_a(k)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
!!!!!!!!!!!!!!!!!! ALPHA BETA
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_double_to_two_body_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
enddo
enddo
enddo
do k_a=istart+ishift,iend,istep
! Single and double alpha excitations
! ===================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
! Initial determinant is at k_b in beta-major representation
! ----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
spindet(1:$N_int) = tmp_det(1:$N_int,1)
! Loop inside the beta column to gather all the connected alphas
lcol = psi_bilinear_matrix_columns(k_a)
l_a = psi_bilinear_matrix_columns_loc(lcol)
do i=1,N_det_alpha_unique
if (l_a > N_det) exit
lcol = psi_bilinear_matrix_columns(l_a)
if (lcol /= kcol) exit
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
idx(i) = l_a
l_a = l_a+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_a, doubles, n_singles_a, n_doubles )
! Compute Hij for all alpha singles
! ----------------------------------
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
do i=1,n_singles_a
l_a = singles_a(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
!!!! MONO SPIN
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_single_to_two_body_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
enddo
!! Compute Hij for all alpha doubles
!! ----------------------------------
!
!do i=1,n_doubles
! l_a = doubles(i)
! ASSERT (l_a <= N_det)
! lrow = psi_bilinear_matrix_rows(l_a)
! ASSERT (lrow <= N_det_alpha_unique)
! call i_H_j_double_spin_erf( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
! do l=1,N_st
! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! ! same spin => sij = 0
! enddo
!enddo
! Single and double beta excitations
! ==================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
spindet(1:$N_int) = tmp_det(1:$N_int,2)
! Initial determinant is at k_b in beta-major representation
! -----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
! Loop inside the alpha row to gather all the connected betas
lrow = psi_bilinear_matrix_transp_rows(k_b)
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
do i=1,N_det_beta_unique
if (l_b > N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l_b)
if (lrow /= krow) exit
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
idx(i) = l_b
l_b = l_b+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_b, doubles, n_singles_b, n_doubles )
! Compute Hij for all beta singles
! ----------------------------------
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
do i=1,n_singles_b
l_b = singles_b(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
l_a = psi_bilinear_matrix_transp_order(l_b)
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_single_to_two_body_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
ASSERT (l_a <= N_det)
enddo
!
!! Compute Hij for all beta doubles
!! ----------------------------------
!
!do i=1,n_doubles
! l_b = doubles(i)
! ASSERT (l_b <= N_det)
! lcol = psi_bilinear_matrix_transp_columns(l_b)
! ASSERT (lcol <= N_det_beta_unique)
! call i_H_j_double_spin_erf( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
! l_a = psi_bilinear_matrix_transp_order(l_b)
! ASSERT (l_a <= N_det)
! do l=1,N_st
! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! ! same spin => sij = 0
! enddo
!enddo
! Diagonal contribution
! =====================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
double precision, external :: diag_H_mat_elem_erf, diag_S_mat_elem
double precision :: c_1(N_states),c_2(N_states)
do l = 1, N_states
c_1(l) = u_t(l,k_a)
enddo
call diagonal_contrib_to_two_body_ab_dm(tmp_det,c_1,big_array,dim1,dim2,dim3,dim4)
end do
deallocate(buffer, singles_a, singles_b, doubles, idx)
end
SUBST [ N_int ]
1;;
2;;
3;;
4;;
N_int;;
END_TEMPLATE
subroutine diagonal_contrib_to_two_body_ab_dm(det_1,c_1,big_array,dim1,dim2,dim3,dim4)
use bitmasks
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2)
double precision, intent(in) :: c_1(N_states)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate
double precision :: c_1_bis
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
do istate = 1, N_states
c_1_bis = c_1(istate) * c_1(istate)
do i = 1, n_occ_ab(1)
h1 = occ(i,1)
do j = 1, n_occ_ab(2)
h2 = occ(j,2)
big_array(h1,h1,h2,h2,istate) += c_1_bis
enddo
enddo
enddo
end
subroutine diagonal_contrib_to_all_two_body_dm(det_1,c_1,big_array_ab,big_array_aa,big_array_bb,dim1,dim2,dim3,dim4)
use bitmasks
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2)
double precision, intent(in) :: c_1(N_states)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate
double precision :: c_1_bis
BEGIN_DOC
! no factor 1/2 have to be taken into account as the permutations are already taken into account
END_DOC
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
do istate = 1, N_states
c_1_bis = c_1(istate) * c_1(istate)
do i = 1, n_occ_ab(1)
h1 = occ(i,1)
do j = 1, n_occ_ab(2)
h2 = occ(j,2)
big_array_ab(h1,h1,h2,h2,istate) += c_1_bis
enddo
do j = 1, n_occ_ab(1)
h2 = occ(j,1)
big_array_aa(h1,h2,h1,h2,istate) -= c_1_bis
big_array_aa(h1,h1,h2,h2,istate) += c_1_bis
enddo
enddo
do i = 1, n_occ_ab(2)
h1 = occ(i,2)
do j = 1, n_occ_ab(2)
h2 = occ(j,2)
big_array_bb(h1,h1,h2,h2,istate) += c_1_bis
big_array_bb(h1,h2,h1,h2,istate) -= c_1_bis
enddo
enddo
enddo
end
subroutine off_diagonal_double_to_two_body_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
use bitmasks
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
double precision, intent(in) :: c_1(N_states),c_2(N_states)
integer :: i,j,h1,h2,p1,p2,istate
integer :: exc(0:2,2,2)
double precision :: phase
call get_double_excitation(det_1,det_2,exc,phase,N_int)
h1 = exc(1,1,1)
h2 = exc(1,1,2)
p1 = exc(1,2,1)
p2 = exc(1,2,2)
do istate = 1, N_states
big_array(h1,p1,h2,p2,istate) += c_1(istate) * phase * c_2(istate)
! big_array(p1,h1,p2,h2,istate) += c_1(istate) * phase * c_2(istate)
enddo
end
subroutine off_diagonal_single_to_two_body_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
use bitmasks
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
double precision, intent(in) :: c_1(N_states),c_2(N_states)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate,p1
integer :: exc(0:2,2,2)
double precision :: phase
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
call get_single_excitation(det_1,det_2,exc,phase,N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
h1 = exc(1,1,1)
p1 = exc(1,2,1)
do istate = 1, N_states
do i = 1, n_occ_ab(2)
h2 = occ(i,2)
big_array(h1,p1,h2,h2,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase
enddo
enddo
else
! Mono beta
h1 = exc(1,1,2)
p1 = exc(1,2,2)
do istate = 1, N_states
do i = 1, n_occ_ab(1)
h2 = occ(i,1)
big_array(h2,h2,h1,p1,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase
enddo
enddo
endif
end