qp2/src/csf/configurations.irp.f

897 lines
24 KiB
Fortran

use bitmasks
BEGIN_PROVIDER [ integer, spin_multiplicity ]
implicit none
BEGIN_DOC
! n_alpha - n_beta + 1
END_DOC
spin_multiplicity = elec_alpha_num - elec_beta_num + 1
END_PROVIDER
subroutine configuration_of_det(d,o,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Transforms a determinant to a configuration
!
! occ(:,1) : Single occupations
!
! occ(:,2) : Double occupations
!
END_DOC
integer ,intent(in) :: Nint
integer(bit_kind),intent(in) :: d(Nint,2)
integer(bit_kind),intent(out) :: o(Nint,2)
integer :: k
do k=1,Nint
o(k,1) = ieor(d(k,1),d(k,2))
o(k,2) = iand(d(k,1),d(k,2))
enddo
end
subroutine configuration_to_dets_size(o,sze,n_alpha,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Number of possible determinants for a given configuration
END_DOC
integer ,intent(in) :: Nint, n_alpha
integer(bit_kind),intent(in) :: o(Nint,2)
integer, intent(out) :: sze
integer :: amax,bmax,k
double precision, external :: binom_func
bmax = 0
amax = n_alpha
do k=1,Nint
bmax += popcnt( o(k,1) )
amax -= popcnt( o(k,2) )
enddo
if (binom_int(bmax, amax) > huge(1)) then
print *, bmax, amax
print *, irp_here, ': Too many determinants to generate'
stop 1
endif
sze = int(binom_int(bmax, amax),4)
end
subroutine configuration_to_dets(o,d,sze,n_alpha,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Generate all possible determinants for a given configuration
!
! Input :
! o : configuration : (doubly occupied, singly occupied)
! sze : Number of produced determinants, computed by `configuration_to_dets_size`
! n_alpha : Number of $\alpha$ electrons
! Nint : N_int
!
! Output:
! d : determinants
!
END_DOC
integer ,intent(in) :: Nint
integer ,intent(in) :: n_alpha ! Number of alpha electrons
integer ,intent(inout) :: sze ! Dimension of the output dets
integer(bit_kind),intent(in) :: o(Nint,2) ! Configurations
integer(bit_kind),intent(out) :: d(Nint,2,sze) ! Output determinants
integer :: i, k, n, ispin, ispin2
! Extract list of singly occupied MOs as (int,pos) pairs
! ------------------------------------------------------
integer :: iint(2*n_alpha), ipos(2*n_alpha)
integer(bit_kind) :: v, t, tt, diff, v_prev
integer :: n_alpha_in_single
n=0
n_alpha_in_single = n_alpha
do i=1,Nint
v = o(i,1)
do while(v /= 0_bit_kind)
n = n+1
iint(n) = i
ipos(n) = trailz(v)
v = iand(v,v-1)
enddo
n_alpha_in_single = n_alpha_in_single - popcnt( o(i,2) )
enddo
v = shiftl(1,n_alpha_in_single) - 1
! Initialize first determinant
d(:,1,1) = o(:,2)
d(:,2,1) = o(:,2)
do k=1,n_alpha_in_single
d(iint(k),1,1) = ibset( d(iint(k),1,1), ipos(k) )
enddo
do k=n_alpha_in_single+1,n
d(iint(k),2,1) = ibset( d(iint(k),2,1), ipos(k) )
enddo
sze = int(binom_int(n,n_alpha_in_single),4)
if ( (shiftl(n_alpha_in_single,1) == n).and.n>0 ) then
! Time reversal symmetry
d(:,1,2) = d(:,2,1)
d(:,2,2) = d(:,1,1)
do i=3,sze,2
! Generate next permutation with Anderson's algorithm
v_prev = v
t = ior(v,v-1)
tt = t+1
v = ior(tt, shiftr( and(not(t),tt) - 1, trailz(v)+1) )
! Find what has changed between v_prev and v
diff = ieor(v,v_prev)
! Initialize with previous determinant
d(:,1,i) = d(:,1,i-2)
d(:,2,i) = d(:,2,i-2)
! Swap bits only where they have changed from v_prev to v
do while (diff /= 0_bit_kind)
k = trailz(diff)+1
if (btest(v,k-1)) then
d(iint(k),1,i) = ibset( d(iint(k),1,i), ipos(k) )
d(iint(k),2,i) = ibclr( d(iint(k),2,i), ipos(k) )
else
d(iint(k),1,i) = ibclr( d(iint(k),1,i), ipos(k) )
d(iint(k),2,i) = ibset( d(iint(k),2,i), ipos(k) )
endif
diff = iand(diff,diff-1_bit_kind)
enddo
! Time reversal symmetry
d(:,1,i+1) = d(:,2,i)
d(:,2,i+1) = d(:,1,i)
enddo
else
do i=2,sze
! Generate next permutation with Anderson's algorithm
v_prev = v
t = ior(v,v-1)
tt = t+1
v = ior(tt, shiftr( and(not(t),tt) - 1, trailz(v)+1) )
! Find what has changed between v_prev and v
diff = ieor(v,v_prev)
! Initialize with previous determinant
d(:,1,i) = d(:,1,i-1)
d(:,2,i) = d(:,2,i-1)
! Swap bits only where they have changed from v_prev to v
do while (diff /= 0_bit_kind)
k = trailz(diff)+1
if (btest(v,k-1)) then
d(iint(k),1,i) = ibset( d(iint(k),1,i), ipos(k) )
d(iint(k),2,i) = ibclr( d(iint(k),2,i), ipos(k) )
else
d(iint(k),1,i) = ibclr( d(iint(k),1,i), ipos(k) )
d(iint(k),2,i) = ibset( d(iint(k),2,i), ipos(k) )
endif
diff = iand(diff,diff-1_bit_kind)
enddo
enddo
endif
end
subroutine configuration_to_dets_tree_addressing(o,d,sze,n_alpha,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Generate all possible determinants for a given configuration
!
! This function preserves the tree addressing i.e.
! the time-reversal determinants are at the opposite ends
! and not one after the other as in the parent function.
!
! Input :
! o : configuration : (doubly occupied, singly occupied)
! sze : Number of produced determinants, computed by `configuration_to_dets_size`
! n_alpha : Number of $\alpha$ electrons
! Nint : N_int
!
! Output:
! d : determinants
!
END_DOC
integer ,intent(in) :: Nint
integer ,intent(in) :: n_alpha ! Number of alpha electrons
integer ,intent(inout) :: sze ! Dimension of the output dets
integer(bit_kind),intent(in) :: o(Nint,2) ! Configurations
integer(bit_kind),intent(out) :: d(Nint,2,sze) ! Output determinants
integer :: i, k, n, ispin, ispin2
! Extract list of singly occupied MOs as (int,pos) pairs
! ------------------------------------------------------
integer :: iint(2*n_alpha), ipos(2*n_alpha)
integer(bit_kind) :: v, t, tt, diff, v_prev
integer :: n_alpha_in_single
n=0
n_alpha_in_single = n_alpha
do i=1,Nint
v = o(i,1)
do while(v /= 0_bit_kind)
n = n+1
iint(n) = i
ipos(n) = trailz(v)
v = iand(v,v-1)
enddo
n_alpha_in_single = n_alpha_in_single - popcnt( o(i,2) )
enddo
v = shiftl(1,n_alpha_in_single) - 1
! Initialize first determinant
d(:,1,1) = o(:,2)
d(:,2,1) = o(:,2)
do k=1,n_alpha_in_single
d(iint(k),1,1) = ibset( d(iint(k),1,1), ipos(k) )
enddo
do k=n_alpha_in_single+1,n
d(iint(k),2,1) = ibset( d(iint(k),2,1), ipos(k) )
enddo
sze = int(binom_int(n,n_alpha_in_single),4)
if ( (shiftl(n_alpha_in_single,1) == n).and.n>0 ) then
! Time reversal symmetry
d(:,1,sze) = d(:,2,1)
d(:,2,sze) = d(:,1,1)
do i=2,sze/2,1
! Generate next permutation with Anderson's algorithm
v_prev = v
t = ior(v,v-1)
tt = t+1
v = ior(tt, shiftr( and(not(t),tt) - 1, trailz(v)+1) )
! Find what has changed between v_prev and v
diff = ieor(v,v_prev)
! Initialize with previous determinant
d(:,1,i) = d(:,1,i-1)
d(:,2,i) = d(:,2,i-1)
! Swap bits only where they have changed from v_prev to v
do while (diff /= 0_bit_kind)
k = trailz(diff)+1
if (btest(v,k-1)) then
d(iint(k),1,i) = ibset( d(iint(k),1,i), ipos(k) )
d(iint(k),2,i) = ibclr( d(iint(k),2,i), ipos(k) )
else
d(iint(k),1,i) = ibclr( d(iint(k),1,i), ipos(k) )
d(iint(k),2,i) = ibset( d(iint(k),2,i), ipos(k) )
endif
diff = iand(diff,diff-1_bit_kind)
enddo
! Time reversal symmetry
d(:,1,sze-i+1) = d(:,2,i)
d(:,2,sze-i+1) = d(:,1,i)
enddo
else
do i=2,sze
! Generate next permutation with Anderson's algorithm
v_prev = v
t = ior(v,v-1)
tt = t+1
v = ior(tt, shiftr( and(not(t),tt) - 1, trailz(v)+1) )
! Find what has changed between v_prev and v
diff = ieor(v,v_prev)
! Initialize with previous determinant
d(:,1,i) = d(:,1,i-1)
d(:,2,i) = d(:,2,i-1)
! Swap bits only where they have changed from v_prev to v
do while (diff /= 0_bit_kind)
k = trailz(diff)+1
if (btest(v,k-1)) then
d(iint(k),1,i) = ibset( d(iint(k),1,i), ipos(k) )
d(iint(k),2,i) = ibclr( d(iint(k),2,i), ipos(k) )
else
d(iint(k),1,i) = ibclr( d(iint(k),1,i), ipos(k) )
d(iint(k),2,i) = ibset( d(iint(k),2,i), ipos(k) )
endif
diff = iand(diff,diff-1_bit_kind)
enddo
enddo
endif
end
BEGIN_PROVIDER [ integer(bit_kind), psi_configuration, (N_int,2,psi_det_size) ]
&BEGIN_PROVIDER [ integer, N_configuration ]
implicit none
BEGIN_DOC
! Array of the configurations present in the wave function.
!
! psi_configuration(:,1,j) = j-th configuration of the wave function : represents all the single occupations
!
! psi_configuration(:,2,j) = j-th configuration of the wave function : represents all the double occupations
!
! The occ patterns are sorted by :c:func:`configuration_search_key`
END_DOC
integer :: i,j,k
! create
do i = 1, N_det
do k = 1, N_int
psi_configuration(k,1,i) = ieor(psi_det(k,1,i),psi_det(k,2,i))
psi_configuration(k,2,i) = iand(psi_det(k,1,i),psi_det(k,2,i))
enddo
enddo
! Sort
integer, allocatable :: iorder(:)
integer*8, allocatable :: bit_tmp(:)
integer*8, external :: configuration_search_key
integer(bit_kind), allocatable :: tmp_array(:,:,:)
logical,allocatable :: duplicate(:)
logical :: dup
allocate ( iorder(N_det), duplicate(N_det), bit_tmp(N_det), tmp_array(N_int,2,N_det) )
do i=1,N_det
iorder(i) = i
bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
enddo
call i8sort(bit_tmp,iorder,N_det)
!$OMP PARALLEL DEFAULT(shared) PRIVATE(i,j,k,dup)
!$OMP DO
do i=1,N_det
do k=1,N_int
tmp_array(k,1,i) = psi_configuration(k,1,iorder(i))
tmp_array(k,2,i) = psi_configuration(k,2,iorder(i))
enddo
duplicate(i) = .False.
enddo
!$OMP END DO
! Find duplicates
!$OMP DO
do i=1,N_det-1
if (duplicate(i)) then
cycle
endif
j = i+1
do while (bit_tmp(j)==bit_tmp(i))
if (duplicate(j)) then
j+=1
if (j>N_det) then
exit
endif
cycle
endif
dup = .True.
do k=1,N_int
dup = dup .and. (tmp_array(k,1,i) == tmp_array(k,1,j)) &
.and. (tmp_array(k,2,i) == tmp_array(k,2,j))
enddo
if (dup) then
duplicate(j) = .True.
endif
j = j+1
if (j>N_det) then
exit
endif
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! Copy filtered result
N_configuration=0
do i=1,N_det
if (duplicate(i)) then
cycle
endif
N_configuration += 1
do k=1,N_int
psi_configuration(k,1,N_configuration) = tmp_array(k,1,i)
psi_configuration(k,2,N_configuration) = tmp_array(k,2,i)
enddo
enddo
!- Check
! print *, 'Checking for duplicates in configuration'
! do i=1,N_configuration
! do j=i+1,N_configuration
! duplicate(1) = .True.
! do k=1,N_int
! if (psi_configuration(k,1,i) /= psi_configuration(k,1,j)) then
! duplicate(1) = .False.
! exit
! endif
! if (psi_configuration(k,2,i) /= psi_configuration(k,2,j)) then
! duplicate(1) = .False.
! exit
! endif
! enddo
! if (duplicate(1)) then
! call debug_det(psi_configuration(1,1,i),N_int)
! call debug_det(psi_configuration(1,1,j),N_int)
! stop 'DUPLICATE'
! endif
! enddo
! enddo
! print *, 'No duplicates'
!-
deallocate(iorder,duplicate,bit_tmp,tmp_array)
END_PROVIDER
BEGIN_PROVIDER [ integer, cfg_seniority_index, (0:elec_num) ]
&BEGIN_PROVIDER [ integer, cfg_nsomo_max ]
implicit none
BEGIN_DOC
! Returns the index in psi_configuration of the first cfg with
! the requested seniority
!
! cfg_nsomo_max : Max number of SOMO in the current wave function
END_DOC
integer :: i, k, s, sold
cfg_seniority_index(:) = -1
sold = -1
cfg_nsomo_max = 0
do i=1,N_configuration
s = 0
do k=1,N_int
if (psi_configuration(k,1,i) == 0_bit_kind) cycle
s = s + popcnt(psi_configuration(k,1,i))
enddo
if (s /= sold) then
sold = s
cfg_seniority_index(s) = i
cfg_nsomo_max = s
endif
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer, det_to_configuration, (N_det) ]
implicit none
BEGIN_DOC
! Returns the index of the configuration for each determinant
END_DOC
integer :: i,j,k,r,l
integer*8 :: key, key2
integer(bit_kind) :: occ(N_int,2)
logical :: found
integer*8, allocatable :: bit_tmp(:)
integer*8, external :: configuration_search_key
allocate(bit_tmp(0:N_configuration))
bit_tmp(0) = 0
do i=1,N_configuration
bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
enddo
!$OMP PARALLEL DO DEFAULT(SHARED) &
!$OMP PRIVATE(i,k,j,r,l,key,found,occ)
do i=1,N_det
do k = 1, N_int
occ(k,1) = ieor(psi_det(k,1,i),psi_det(k,2,i))
occ(k,2) = iand(psi_det(k,1,i),psi_det(k,2,i))
enddo
key = configuration_search_key(occ,N_int)
! Binary search
l = 0
r = N_configuration+1
j = shiftr(r-l,1)
do while (j>=1)
j = j+l
if (bit_tmp(j) == key) then
do while (bit_tmp(j) == bit_tmp(j-1))
j = j-1
enddo
do while (bit_tmp(j) == key)
found = .True.
do k=1,N_int
found = found .and. (psi_configuration(k,1,j) == occ(k,1)) &
.and. (psi_configuration(k,2,j) == occ(k,2))
enddo
if (found) then
det_to_configuration(i) = j
exit
endif
j = j+1
enddo
if (found) exit
else if (bit_tmp(j) > key) then
r = j
else
l = j
endif
j = shiftr(r-l,1)
enddo
enddo
!$OMP END PARALLEL DO
deallocate(bit_tmp)
END_PROVIDER
BEGIN_PROVIDER [ double precision, psi_configuration_Hii, (N_configuration) ]
implicit none
BEGIN_DOC
! $\langle I|H|I \rangle$ where $|I\rangle$ is a configuration.
! This is the minimum $H_{ii}$, where the $|i\rangle$ are the
! determinants of $|I\rangle$.
END_DOC
integer :: j, i
psi_configuration_Hii(:) = huge(1.d0)
do i=1,N_det
j = det_to_configuration(i)
psi_configuration_Hii(j) = min(psi_configuration_Hii(j), psi_det_Hii(i))
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, weight_configuration, (N_configuration,N_states) ]
implicit none
BEGIN_DOC
! Weight of the configurations in the wave function
END_DOC
integer :: i,j,k
weight_configuration = 0.d0
do i=1,N_det
j = det_to_configuration(i)
do k=1,N_states
weight_configuration(j,k) += psi_coef(i,k) * psi_coef(i,k)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, weight_configuration_average, (N_configuration) ]
implicit none
BEGIN_DOC
! State-average weight of the configurations in the wave function
END_DOC
integer :: i,j,k
weight_configuration_average(:) = 0.d0
do i=1,N_det
j = det_to_configuration(i)
do k=1,N_states
weight_configuration_average(j) += psi_coef(i,k) * psi_coef(i,k) * state_average_weight(k)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_configuration_sorted, (N_int,2,N_configuration) ]
&BEGIN_PROVIDER [ double precision, weight_configuration_average_sorted, (N_configuration) ]
&BEGIN_PROVIDER [ integer, psi_configuration_sorted_order, (N_configuration) ]
&BEGIN_PROVIDER [ integer, psi_configuration_sorted_order_reverse, (N_configuration) ]
implicit none
BEGIN_DOC
! Configurations sorted by weight
END_DOC
integer :: i,j,k
integer, allocatable :: iorder(:)
allocate ( iorder(N_configuration) )
do i=1,N_configuration
weight_configuration_average_sorted(i) = -weight_configuration_average(i)
iorder(i) = i
enddo
call dsort(weight_configuration_average_sorted,iorder,N_configuration)
do i=1,N_configuration
do j=1,N_int
psi_configuration_sorted(j,1,i) = psi_configuration(j,1,iorder(i))
psi_configuration_sorted(j,2,i) = psi_configuration(j,2,iorder(i))
enddo
psi_configuration_sorted_order(iorder(i)) = i
psi_configuration_sorted_order_reverse(i) = iorder(i)
weight_configuration_average_sorted(i) = -weight_configuration_average_sorted(i)
enddo
deallocate(iorder)
END_PROVIDER
subroutine make_s2_eigenfunction
implicit none
integer :: i,j,k
integer :: smax, s
integer(bit_kind), allocatable :: d(:,:,:), det_buffer(:,:,:)
integer :: N_det_new, ithread, omp_get_thread_num
integer, parameter :: bufsze = 1000
logical, external :: is_in_wavefunction
logical :: update
update=.False.
call write_int(6,N_configuration,'Number of configurations')
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(N_configuration, psi_configuration, elec_alpha_num,N_int,update) &
!$OMP PRIVATE(s,ithread, d, det_buffer, smax, N_det_new,i,j,k)
N_det_new = 0
call configuration_to_dets_size(psi_configuration(1,1,1),s,elec_alpha_num,N_int)
allocate (d(N_int,2,s+64), det_buffer(N_int,2,bufsze) )
smax = s
ithread=0
!$ ithread = omp_get_thread_num()
!$OMP DO SCHEDULE (dynamic,1000)
do i=1,N_configuration
call configuration_to_dets_size(psi_configuration(1,1,i),s,elec_alpha_num,N_int)
s += 1
if (s > smax) then
deallocate(d)
allocate ( d(N_int,2,s+64) )
smax = s
endif
call configuration_to_dets(psi_configuration(1,1,i),d,s,elec_alpha_num,N_int)
do j=1,s
if ( is_in_wavefunction(d(1,1,j), N_int) ) then
cycle
endif
update = .true.
N_det_new += 1
det_buffer(:,:,N_det_new) = d(:,:,j)
if (N_det_new == bufsze) then
call fill_H_apply_buffer_no_selection(bufsze,det_buffer,N_int,ithread)
N_det_new = 0
endif
enddo
enddo
!$OMP END DO NOWAIT
if (N_det_new > 0) then
call fill_H_apply_buffer_no_selection(N_det_new,det_buffer,N_int,ithread)
endif
!$OMP BARRIER
deallocate(d,det_buffer)
!$OMP END PARALLEL
if (update) then
call copy_H_apply_buffer_to_wf
TOUCH N_det psi_coef psi_det psi_configuration N_configuration
endif
call write_time(6)
end
BEGIN_PROVIDER [ integer, dominant_cfg, (N_states) ]
implicit none
BEGIN_DOC
! Configuration of the determinants with the largest weight, for each state
END_DOC
integer :: k
dominant_cfg(1) = det_to_configuration(dominant_det(1))
if (N_det < N_states) then
dominant_cfg(:) = dominant_cfg(1)
else
do k=1,N_states
dominant_cfg(k) = det_to_configuration(dominant_det(k))
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ integer, N_dominant_dets_of_cfgs ]
implicit none
BEGIN_DOC
! Number of determinants in all dominant determinants
END_DOC
integer :: k, sze
N_dominant_dets_of_cfgs = 0
do k=1,N_states
call configuration_to_dets_size( &
psi_configuration(1,1,dominant_cfg(k)), &
sze, elec_alpha_num, N_int)
N_dominant_dets_of_cfgs += sze
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), dominant_dets_of_cfgs, (N_int,2,N_dominant_dets_of_cfgs) ]
implicit none
BEGIN_DOC
! Configuration of the determinants with the largest weight, for each state
END_DOC
integer :: i,k,sze
i=1
do k=1,N_states
sze = N_dominant_dets_of_cfgs
call configuration_to_dets( &
psi_configuration(1,1,dominant_cfg(k)), &
dominant_dets_of_cfgs(1,1,i), &
sze,elec_alpha_num,N_int)
i += sze
enddo
END_PROVIDER
subroutine binary_search_cfg(cfgInp,addcfg)
use bitmasks
implicit none
BEGIN_DOC
! Documentation for binary_search
!
! Does a binary search to find
! the address of a configuration in a list of
! configurations.
END_DOC
integer(bit_kind), intent(in) :: cfgInp(N_int,2)
integer , intent(out) :: addcfg
integer :: i,j,k,r,l
integer*8 :: key, key2
logical :: found
!integer*8, allocatable :: bit_tmp(:)
!integer*8, external :: configuration_search_key
!allocate(bit_tmp(0:N_configuration))
!bit_tmp(0) = 0
do i=1,N_configuration
!bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
found = .True.
do k=1,N_int
found = found .and. (psi_configuration(k,1,i) == cfgInp(k,1)) &
.and. (psi_configuration(k,2,i) == cfgInp(k,2))
enddo
if (found) then
addcfg = i
exit
endif
enddo
end subroutine
BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det, (2,N_configuration) ]
&BEGIN_PROVIDER [ integer, psi_configuration_n_det, (N_configuration) ]
&BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det_data, (N_det) ]
implicit none
BEGIN_DOC
! psi_configuration_to_psi_det_data(k) -> i : i is the index of the
! determinant in psi_det.
!
! psi_configuration_to_psi_det(1:2,k) gives the first and last index of the
! determinants of configuration k in array psi_configuration_to_psi_det_data.
END_DOC
integer :: i, k, iorder
integer, allocatable :: confs(:)
allocate (confs(N_det))
do i=1,N_det
psi_configuration_to_psi_det_data(i) = i
confs(i) = det_to_configuration(i)
enddo
call isort(confs, psi_configuration_to_psi_det_data, N_det)
k=1
psi_configuration_to_psi_det(1,1) = 1
do i=2,N_det
if (confs(i) /= confs(i-1)) then
psi_configuration_to_psi_det(2,k) = i-1
k = k+1
psi_configuration_to_psi_det(1,k) = i
endif
enddo
psi_configuration_to_psi_det(2,k) = N_det
! Reorder determinants according to generation
! --------------------------------------------
integer(bit_kind), allocatable :: dets(:,:,:)
integer :: nmax, sze, degree, istart, iend, j
integer, allocatable :: old_order(:)
nmax = 1000
allocate(dets(N_int,2,nmax), old_order(nmax))
do k=1,N_configuration
istart = psi_configuration_to_psi_det(1,k)
iend = psi_configuration_to_psi_det(2,k)
if (iend-istart+1 > nmax) then
nmax = iend-istart+1
deallocate(dets)
allocate(dets(N_int,2,nmax))
endif
sze = nmax
call configuration_to_dets_tree_addressing( &
psi_configuration(1,1,k), &
dets, sze, elec_alpha_num, N_int)
if (sze /= iend-istart+1) then
print *, 'bug in ', irp_here
stop -1
endif
do i=1,sze
old_order(i) = psi_configuration_to_psi_det_data(i-1+istart)
enddo
do i=1,sze
do j=1,sze
if (old_order(j) == 0) cycle
call get_excitation_degree(dets(1,1,i), &
psi_det(1, 1, old_order(j)), degree, N_int)
if (degree == 0) then
psi_configuration_to_psi_det_data(i-1+istart) = old_order(j)
old_order(j) = 0
exit
endif
enddo
enddo
enddo
deallocate(dets, old_order)
integer :: ndet_conf
do i = 1, N_configuration
ndet_conf = psi_configuration_to_psi_det(2,i) - psi_configuration_to_psi_det(1,i) + 1
psi_configuration_n_det(i) = ndet_conf
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer, n_elec_alpha_for_psi_configuration, (N_configuration)]
implicit none
integer :: i,j,k,l
integer(bit_kind) :: det_tmp(N_int,2),det_alpha(N_int)
n_elec_alpha_for_psi_configuration = 0
do i = 1, N_configuration
j = psi_configuration_to_psi_det(2,i)
det_tmp(:,:) = psi_det(:,:,j)
k = 0
do l = 1, N_int
det_alpha(N_int) = iand(det_tmp(l,1),psi_configuration(l,1,i))
k += popcnt(det_alpha(l))
enddo
n_elec_alpha_for_psi_configuration(i) = k
enddo
END_PROVIDER