qp2/src/becke_numerical_grid/grid_becke_per_atom.irp.f

54 lines
1.9 KiB
Fortran

BEGIN_PROVIDER [integer, n_pts_per_atom, (nucl_num)]
&BEGIN_PROVIDER [integer, n_pts_max_per_atom]
BEGIN_DOC
! Number of points which are non zero
END_DOC
integer :: i,j,k,l
n_pts_per_atom = 0
do j = 1, nucl_num
do i = 1, n_points_radial_grid -1
do k = 1, n_points_integration_angular
if(dabs(final_weight_at_r(k,i,j)) < thresh_grid)then
cycle
endif
n_pts_per_atom(j) += 1
enddo
enddo
enddo
n_pts_max_per_atom = maxval(n_pts_per_atom)
END_PROVIDER
BEGIN_PROVIDER [double precision, final_grid_points_per_atom, (3,n_pts_max_per_atom,nucl_num)]
&BEGIN_PROVIDER [double precision, final_weight_at_r_vector_per_atom, (n_pts_max_per_atom,nucl_num) ]
&BEGIN_PROVIDER [integer, index_final_points_per_atom, (3,n_pts_max_per_atom,nucl_num) ]
&BEGIN_PROVIDER [integer, index_final_points_per_atom_reverse, (n_points_integration_angular,n_points_radial_grid,nucl_num) ]
implicit none
integer :: i,j,k,l,i_count(nucl_num)
double precision :: r(3)
i_count = 0
do j = 1, nucl_num
do i = 1, n_points_radial_grid -1
do k = 1, n_points_integration_angular
if(dabs(final_weight_at_r(k,i,j)) < thresh_grid)then
cycle
endif
i_count(j) += 1
final_grid_points_per_atom(1,i_count(j),j) = grid_points_per_atom(1,k,i,j)
final_grid_points_per_atom(2,i_count(j),j) = grid_points_per_atom(2,k,i,j)
final_grid_points_per_atom(3,i_count(j),j) = grid_points_per_atom(3,k,i,j)
final_weight_at_r_vector_per_atom(i_count(j),j) = final_weight_at_r(k,i,j)
index_final_points_per_atom(1,i_count(j),j) = k
index_final_points_per_atom(2,i_count(j),j) = i
index_final_points_per_atom(3,i_count(j),j) = j
index_final_points_per_atom_reverse(k,i,j) = i_count(j)
enddo
enddo
enddo
END_PROVIDER