9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-07-21 10:13:26 +02:00
qp2/src/ao_two_e_ints/two_e_integrals.irp.f
Anthony Scemama ad498b073e
Some checks failed
continuous-integration/drone/push Build is failing
Added use_only_lr for long-range only integrals
2023-10-16 16:29:28 +02:00

1757 lines
51 KiB
Fortran

! ---
double precision function ao_two_e_integral(i, j, k, l)
BEGIN_DOC
! integral of the AO basis <ik|jl> or (ij|kl)
! i(r1) j(r1) 1/r12 k(r2) l(r2)
END_DOC
implicit none
include 'utils/constants.include.F'
integer, intent(in) :: i, j, k, l
integer :: p, q, r, s
integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3)
integer :: iorder_p(3), iorder_q(3)
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
double precision :: integral
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp
double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq
double precision, external :: ao_two_e_integral_erf
double precision, external :: ao_two_e_integral_cosgtos
double precision, external :: ao_two_e_integral_schwartz_accel
if(use_cosgtos) then
!print *, ' use_cosgtos for ao_two_e_integral ?', use_cosgtos
ao_two_e_integral = ao_two_e_integral_cosgtos(i, j, k, l)
else if (use_only_lr) then
ao_two_e_integral = ao_two_e_integral_erf(i, j, k, l)
else if (ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
ao_two_e_integral = ao_two_e_integral_schwartz_accel(i,j,k,l)
else
dim1 = n_pt_max_integrals
num_i = ao_nucl(i)
num_j = ao_nucl(j)
num_k = ao_nucl(k)
num_l = ao_nucl(l)
ao_two_e_integral = 0.d0
if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
I_center(p) = nucl_coord(num_i,p)
J_center(p) = nucl_coord(num_j,p)
K_center(p) = nucl_coord(num_k,p)
L_center(p) = nucl_coord(num_l,p)
enddo
double precision :: coef1, coef2, coef3, coef4
double precision :: p_inv,q_inv
double precision :: general_primitive_integral
do p = 1, ao_prim_num(i)
coef1 = ao_coef_normalized_ordered_transp(p,i)
do q = 1, ao_prim_num(j)
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
I_power,J_power,I_center,J_center,dim1)
p_inv = 1.d0/pp
do r = 1, ao_prim_num(k)
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
do s = 1, ao_prim_num(l)
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
K_power,L_power,K_center,L_center,dim1)
q_inv = 1.d0/qq
integral = general_primitive_integral(dim1, &
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
ao_two_e_integral = ao_two_e_integral + coef4 * integral
enddo ! s
enddo ! r
enddo ! q
enddo ! p
else
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
enddo
double precision :: ERI
do p = 1, ao_prim_num(i)
coef1 = ao_coef_normalized_ordered_transp(p,i)
do q = 1, ao_prim_num(j)
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
do r = 1, ao_prim_num(k)
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
do s = 1, ao_prim_num(l)
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
integral = ERI( &
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
I_power(1),J_power(1),K_power(1),L_power(1), &
I_power(2),J_power(2),K_power(2),L_power(2), &
I_power(3),J_power(3),K_power(3),L_power(3))
ao_two_e_integral = ao_two_e_integral + coef4 * integral
enddo ! s
enddo ! r
enddo ! q
enddo ! p
endif
endif
end
! ---
double precision function ao_two_e_integral_schwartz_accel(i,j,k,l)
implicit none
BEGIN_DOC
! integral of the AO basis <ik|jl> or (ij|kl)
! i(r1) j(r1) 1/r12 k(r2) l(r2)
END_DOC
integer,intent(in) :: i,j,k,l
integer :: p,q,r,s
double precision :: I_center(3),J_center(3),K_center(3),L_center(3)
integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3)
double precision :: integral
include 'utils/constants.include.F'
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp
double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq
integer :: iorder_p(3), iorder_q(3)
double precision, allocatable :: schwartz_kl(:,:)
double precision :: schwartz_ij
dim1 = n_pt_max_integrals
num_i = ao_nucl(i)
num_j = ao_nucl(j)
num_k = ao_nucl(k)
num_l = ao_nucl(l)
ao_two_e_integral_schwartz_accel = 0.d0
double precision :: thr
thr = ao_integrals_threshold*ao_integrals_threshold
allocate(schwartz_kl(0:ao_prim_num(l),0:ao_prim_num(k)))
if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
I_center(p) = nucl_coord(num_i,p)
J_center(p) = nucl_coord(num_j,p)
K_center(p) = nucl_coord(num_k,p)
L_center(p) = nucl_coord(num_l,p)
enddo
schwartz_kl(0,0) = 0.d0
do r = 1, ao_prim_num(k)
coef1 = ao_coef_normalized_ordered_transp(r,k)*ao_coef_normalized_ordered_transp(r,k)
schwartz_kl(0,r) = 0.d0
do s = 1, ao_prim_num(l)
coef2 = coef1 * ao_coef_normalized_ordered_transp(s,l) * ao_coef_normalized_ordered_transp(s,l)
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
K_power,L_power,K_center,L_center,dim1)
q_inv = 1.d0/qq
schwartz_kl(s,r) = general_primitive_integral(dim1, &
Q_new,Q_center,fact_q,qq,q_inv,iorder_q, &
Q_new,Q_center,fact_q,qq,q_inv,iorder_q) &
* coef2
schwartz_kl(0,r) = max(schwartz_kl(0,r),schwartz_kl(s,r))
enddo
schwartz_kl(0,0) = max(schwartz_kl(0,r),schwartz_kl(0,0))
enddo
do p = 1, ao_prim_num(i)
double precision :: coef1
coef1 = ao_coef_normalized_ordered_transp(p,i)
do q = 1, ao_prim_num(j)
double precision :: coef2
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
double precision :: p_inv,q_inv
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
I_power,J_power,I_center,J_center,dim1)
p_inv = 1.d0/pp
schwartz_ij = general_primitive_integral(dim1, &
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
P_new,P_center,fact_p,pp,p_inv,iorder_p) * &
coef2*coef2
if (schwartz_kl(0,0)*schwartz_ij < thr) then
cycle
endif
do r = 1, ao_prim_num(k)
if (schwartz_kl(0,r)*schwartz_ij < thr) then
cycle
endif
double precision :: coef3
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
do s = 1, ao_prim_num(l)
double precision :: coef4
if (schwartz_kl(s,r)*schwartz_ij < thr) then
cycle
endif
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
double precision :: general_primitive_integral
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
K_power,L_power,K_center,L_center,dim1)
q_inv = 1.d0/qq
integral = general_primitive_integral(dim1, &
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
ao_two_e_integral_schwartz_accel = ao_two_e_integral_schwartz_accel + coef4 * integral
enddo ! s
enddo ! r
enddo ! q
enddo ! p
else
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
enddo
double precision :: ERI
schwartz_kl(0,0) = 0.d0
do r = 1, ao_prim_num(k)
coef1 = ao_coef_normalized_ordered_transp(r,k)*ao_coef_normalized_ordered_transp(r,k)
schwartz_kl(0,r) = 0.d0
do s = 1, ao_prim_num(l)
coef2 = coef1*ao_coef_normalized_ordered_transp(s,l)*ao_coef_normalized_ordered_transp(s,l)
schwartz_kl(s,r) = ERI( &
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
K_power(1),L_power(1),K_power(1),L_power(1), &
K_power(2),L_power(2),K_power(2),L_power(2), &
K_power(3),L_power(3),K_power(3),L_power(3)) * &
coef2
schwartz_kl(0,r) = max(schwartz_kl(0,r),schwartz_kl(s,r))
enddo
schwartz_kl(0,0) = max(schwartz_kl(0,r),schwartz_kl(0,0))
enddo
do p = 1, ao_prim_num(i)
coef1 = ao_coef_normalized_ordered_transp(p,i)
do q = 1, ao_prim_num(j)
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
schwartz_ij = ERI( &
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),&
I_power(1),J_power(1),I_power(1),J_power(1), &
I_power(2),J_power(2),I_power(2),J_power(2), &
I_power(3),J_power(3),I_power(3),J_power(3))*coef2*coef2
if (schwartz_kl(0,0)*schwartz_ij < thr) then
cycle
endif
do r = 1, ao_prim_num(k)
if (schwartz_kl(0,r)*schwartz_ij < thr) then
cycle
endif
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
do s = 1, ao_prim_num(l)
if (schwartz_kl(s,r)*schwartz_ij < thr) then
cycle
endif
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
integral = ERI( &
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
I_power(1),J_power(1),K_power(1),L_power(1), &
I_power(2),J_power(2),K_power(2),L_power(2), &
I_power(3),J_power(3),K_power(3),L_power(3))
ao_two_e_integral_schwartz_accel = ao_two_e_integral_schwartz_accel + coef4 * integral
enddo ! s
enddo ! r
enddo ! q
enddo ! p
endif
deallocate (schwartz_kl)
end
integer function ao_l4(i,j,k,l)
implicit none
BEGIN_DOC
! Computes the product of l values of i,j,k,and l
END_DOC
integer, intent(in) :: i,j,k,l
ao_l4 = ao_l(i)*ao_l(j)*ao_l(k)*ao_l(l)
end
subroutine compute_ao_two_e_integrals(j,k,l,sze,buffer_value)
implicit none
use map_module
BEGIN_DOC
! Compute AO 1/r12 integrals for all i and fixed j,k,l
END_DOC
include 'utils/constants.include.F'
integer, intent(in) :: j,k,l,sze
real(integral_kind), intent(out) :: buffer_value(sze)
double precision :: ao_two_e_integral
integer :: i
logical, external :: ao_one_e_integral_zero
logical, external :: ao_two_e_integral_zero
if (ao_one_e_integral_zero(j,l)) then
buffer_value = 0._integral_kind
return
endif
do i = 1, ao_num
if (ao_two_e_integral_zero(i,j,k,l)) then
buffer_value(i) = 0._integral_kind
cycle
endif
!DIR$ FORCEINLINE
buffer_value(i) = ao_two_e_integral(i,k,j,l)
enddo
end
BEGIN_PROVIDER [ logical, ao_two_e_integrals_in_map ]
implicit none
use f77_zmq
use map_module
BEGIN_DOC
! Map of Atomic integrals
! i(r1) j(r2) 1/r12 k(r1) l(r2)
END_DOC
integer :: i,j,k,l
double precision :: ao_two_e_integral,cpu_1,cpu_2, wall_1, wall_2
double precision :: integral, wall_0
include 'utils/constants.include.F'
! For integrals file
integer(key_kind),allocatable :: buffer_i(:)
integer,parameter :: size_buffer = 1024*64
real(integral_kind),allocatable :: buffer_value(:)
integer :: n_integrals, rc
integer :: kk, m, j1, i1, lmax
character*(64) :: fmt
double precision :: map_mb
PROVIDE read_ao_two_e_integrals io_ao_two_e_integrals
if (read_ao_two_e_integrals) then
print*,'Reading the AO integrals'
call map_load_from_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
print*, 'AO integrals provided'
ao_two_e_integrals_in_map = .True.
else
print*, 'Providing the AO integrals'
call wall_time(wall_0)
call wall_time(wall_1)
call cpu_time(cpu_1)
if (.True.) then
! Avoid openMP
integral = ao_two_e_integral(1,1,1,1)
endif
integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'ao_integrals')
character(len=:), allocatable :: task
allocate(character(len=ao_num*12) :: task)
write(fmt,*) '(', ao_num, '(I5,X,I5,''|''))'
do l=1,ao_num
write(task,fmt) (i,l, i=1,l)
integer, external :: add_task_to_taskserver
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task)) == -1) then
stop 'Unable to add task to server'
endif
enddo
deallocate(task)
integer, external :: zmq_set_running
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
print *, irp_here, ': Failed in zmq_set_running'
endif
PROVIDE nproc
!$OMP PARALLEL DEFAULT(shared) private(i) num_threads(nproc+1)
i = omp_get_thread_num()
if (i==0) then
call ao_two_e_integrals_in_map_collector(zmq_socket_pull)
else
call ao_two_e_integrals_in_map_slave_inproc(i)
endif
!$OMP END PARALLEL
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'ao_integrals')
print*, 'Sorting the map'
call map_sort(ao_integrals_map)
call cpu_time(cpu_2)
call wall_time(wall_2)
integer(map_size_kind) :: get_ao_map_size, ao_map_size
ao_map_size = get_ao_map_size()
print*, 'AO integrals provided:'
print*, ' Size of AO map : ', map_mb(ao_integrals_map) ,'MB'
print*, ' Number of AO integrals :', ao_map_size
print*, ' cpu time :',cpu_2 - cpu_1, 's'
print*, ' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1+tiny(1.d0)), ' )'
ao_two_e_integrals_in_map = .True.
if (write_ao_two_e_integrals.and.mpi_master) then
call ezfio_set_work_empty(.False.)
call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
call ezfio_set_ao_two_e_ints_io_ao_two_e_integrals('Read')
endif
endif
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, ao_two_e_integral_schwartz, (ao_num, ao_num) ]
BEGIN_DOC
! Needed to compute Schwartz inequalities
END_DOC
implicit none
integer :: i, k
double precision :: ao_two_e_integral,cpu_1,cpu_2, wall_1, wall_2
ao_two_e_integral_schwartz(1,1) = ao_two_e_integral(1,1,1,1)
!$OMP PARALLEL DO PRIVATE(i,k) &
!$OMP DEFAULT(NONE) &
!$OMP SHARED (ao_num,ao_two_e_integral_schwartz) &
!$OMP SCHEDULE(guided)
do i=1,ao_num
do k=1,i
ao_two_e_integral_schwartz(i,k) = dsqrt(ao_two_e_integral(i,i,k,k))
ao_two_e_integral_schwartz(k,i) = ao_two_e_integral_schwartz(i,k)
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
! ---
double precision function general_primitive_integral(dim, &
P_new,P_center,fact_p,p,p_inv,iorder_p, &
Q_new,Q_center,fact_q,q,q_inv,iorder_q)
implicit none
BEGIN_DOC
! Computes the integral <pq|rs> where p,q,r,s are Gaussian primitives
END_DOC
integer,intent(in) :: dim
include 'utils/constants.include.F'
double precision, intent(in) :: P_new(0:max_dim,3),P_center(3),fact_p,p,p_inv
double precision, intent(in) :: Q_new(0:max_dim,3),Q_center(3),fact_q,q,q_inv
integer, intent(in) :: iorder_p(3)
integer, intent(in) :: iorder_q(3)
double precision :: r_cut,gama_r_cut,rho,dist
double precision :: dx(0:max_dim),Ix_pol(0:max_dim),dy(0:max_dim),Iy_pol(0:max_dim),dz(0:max_dim),Iz_pol(0:max_dim)
integer :: n_Ix,n_Iy,n_Iz,nx,ny,nz
double precision :: bla
integer :: ix,iy,iz,jx,jy,jz,i
double precision :: a,b,c,d,e,f,accu,pq,const
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2,pq_inv_2
integer :: n_pt_tmp,n_pt_out, iorder
double precision :: d1(0:max_dim),d_poly(0:max_dim),rint,d1_screened(0:max_dim)
general_primitive_integral = 0.d0
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx,Ix_pol,dy,Iy_pol,dz,Iz_pol
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
! Gaussian Product
! ----------------
pq = p_inv*0.5d0*q_inv
pq_inv = 0.5d0/(p+q)
p10_1 = q*pq ! 1/(2p)
p01_1 = p*pq ! 1/(2q)
pq_inv_2 = pq_inv+pq_inv
p10_2 = pq_inv_2 * p10_1*q !0.5d0*q/(pq + p*p)
p01_2 = pq_inv_2 * p01_1*p !0.5d0*p/(q*q + pq)
accu = 0.d0
iorder = iorder_p(1)+iorder_q(1)+iorder_p(1)+iorder_q(1)
do ix=0,iorder
Ix_pol(ix) = 0.d0
enddo
n_Ix = 0
do ix = 0, iorder_p(1)
if (abs(P_new(ix,1)) < thresh) cycle
a = P_new(ix,1)
do jx = 0, iorder_q(1)
d = a*Q_new(jx,1)
if (abs(d) < thresh) cycle
!DIR$ FORCEINLINE
call give_polynom_mult_center_x(P_center(1),Q_center(1),ix,jx,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dx,nx)
!DIR$ FORCEINLINE
call add_poly_multiply(dx,nx,d,Ix_pol,n_Ix)
enddo
enddo
if (n_Ix == -1) then
return
endif
iorder = iorder_p(2)+iorder_q(2)+iorder_p(2)+iorder_q(2)
do ix=0, iorder
Iy_pol(ix) = 0.d0
enddo
n_Iy = 0
do iy = 0, iorder_p(2)
if (abs(P_new(iy,2)) > thresh) then
b = P_new(iy,2)
do jy = 0, iorder_q(2)
e = b*Q_new(jy,2)
if (abs(e) < thresh) cycle
!DIR$ FORCEINLINE
call give_polynom_mult_center_x(P_center(2),Q_center(2),iy,jy,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dy,ny)
!DIR$ FORCEINLINE
call add_poly_multiply(dy,ny,e,Iy_pol,n_Iy)
enddo
endif
enddo
if (n_Iy == -1) then
return
endif
iorder = iorder_p(3)+iorder_q(3)+iorder_p(3)+iorder_q(3)
do ix=0,iorder
Iz_pol(ix) = 0.d0
enddo
n_Iz = 0
do iz = 0, iorder_p(3)
if (abs(P_new(iz,3)) > thresh) then
c = P_new(iz,3)
do jz = 0, iorder_q(3)
f = c*Q_new(jz,3)
if (abs(f) < thresh) cycle
!DIR$ FORCEINLINE
call give_polynom_mult_center_x(P_center(3),Q_center(3),iz,jz,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dz,nz)
!DIR$ FORCEINLINE
call add_poly_multiply(dz,nz,f,Iz_pol,n_Iz)
enddo
endif
enddo
if (n_Iz == -1) then
return
endif
rho = p*q *pq_inv_2
dist = (P_center(1) - Q_center(1))*(P_center(1) - Q_center(1)) + &
(P_center(2) - Q_center(2))*(P_center(2) - Q_center(2)) + &
(P_center(3) - Q_center(3))*(P_center(3) - Q_center(3))
const = dist*rho
n_pt_tmp = n_Ix+n_Iy
do i=0,n_pt_tmp
d_poly(i)=0.d0
enddo
! call multiply_poly(Ix_pol,n_Ix,Iy_pol,n_Iy,d_poly,n_pt_tmp)
integer :: ib, ic
if (ior(n_Ix,n_Iy) >= 0) then
do ib=0,n_Ix
do ic = 0,n_Iy
d_poly(ib+ic) = d_poly(ib+ic) + Iy_pol(ic) * Ix_pol(ib)
enddo
enddo
do n_pt_tmp = n_Ix+n_Iy, 0, -1
if (d_poly(n_pt_tmp) /= 0.d0) exit
enddo
endif
if (n_pt_tmp == -1) then
return
endif
n_pt_out = n_pt_tmp+n_Iz
do i=0,n_pt_out
d1(i)=0.d0
enddo
! call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out)
if (ior(n_pt_tmp,n_Iz) >= 0) then
! Bottleneck here
do ib=0,n_pt_tmp
do ic = 0,n_Iz
d1(ib+ic) = d1(ib+ic) + Iz_pol(ic) * d_poly(ib)
enddo
enddo
do n_pt_out = n_pt_tmp+n_Iz, 0, -1
if (d1(n_pt_out) /= 0.d0) exit
enddo
endif
double precision :: rint_sum
accu = accu + rint_sum(n_pt_out,const,d1)
general_primitive_integral = fact_p * fact_q * accu *pi_5_2*p_inv*q_inv/dsqrt(p+q)
end
double precision function ERI(alpha,beta,delta,gama,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z)
implicit none
BEGIN_DOC
! ATOMIC PRIMTIVE two-electron integral between the 4 primitives ::
! primitive_1 = x1**(a_x) y1**(a_y) z1**(a_z) exp(-alpha * r1**2)
! primitive_2 = x1**(b_x) y1**(b_y) z1**(b_z) exp(- beta * r1**2)
! primitive_3 = x2**(c_x) y2**(c_y) z2**(c_z) exp(-delta * r2**2)
! primitive_4 = x2**(d_x) y2**(d_y) z2**(d_z) exp(- gama * r2**2)
END_DOC
double precision, intent(in) :: delta,gama,alpha,beta
integer, intent(in) :: a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z
integer :: a_x_2,b_x_2,c_x_2,d_x_2,a_y_2,b_y_2,c_y_2,d_y_2,a_z_2,b_z_2,c_z_2,d_z_2
integer :: i,j,k,l,n_pt
integer :: n_pt_sup
double precision :: p,q,denom,coeff
double precision :: I_f
integer :: nx,ny,nz
include 'utils/constants.include.F'
nx = a_x+b_x+c_x+d_x
if(iand(nx,1) == 1) then
ERI = 0.d0
return
endif
ny = a_y+b_y+c_y+d_y
if(iand(ny,1) == 1) then
ERI = 0.d0
return
endif
nz = a_z+b_z+c_z+d_z
if(iand(nz,1) == 1) then
ERI = 0.d0
return
endif
ASSERT (alpha >= 0.d0)
ASSERT (beta >= 0.d0)
ASSERT (delta >= 0.d0)
ASSERT (gama >= 0.d0)
p = alpha + beta
q = delta + gama
ASSERT (p+q >= 0.d0)
n_pt = shiftl( nx+ny+nz,1 )
coeff = pi_5_2 / (p * q * dsqrt(p+q))
if (n_pt == 0) then
ERI = coeff
return
endif
call integrale_new(I_f,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z,p,q,n_pt)
ERI = I_f * coeff
end
subroutine integrale_new(I_f,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z,p,q,n_pt)
BEGIN_DOC
! Calculates the integral of the polynomial :
!
! $I_{x_1}(a_x+b_x,c_x+d_x,p,q) \, I_{x_1}(a_y+b_y,c_y+d_y,p,q) \, I_{x_1}(a_z+b_z,c_z+d_z,p,q)$
! in $( 0 ; 1)$
END_DOC
implicit none
include 'utils/constants.include.F'
double precision :: p,q
integer :: a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z
integer :: i, n_pt, j
double precision :: I_f, pq_inv, p10_1, p10_2, p01_1, p01_2,rho,pq_inv_2
integer :: ix,iy,iz, jx,jy,jz, sx,sy,sz
j = shiftr(n_pt,1)
ASSERT (n_pt > 1)
pq_inv = 0.5d0/(p+q)
pq_inv_2 = pq_inv + pq_inv
p10_1 = 0.5d0/p
p01_1 = 0.5d0/q
p10_2 = 0.5d0 * q /(p * q + p * p)
p01_2 = 0.5d0 * p /(q * q + q * p)
double precision :: B00(n_pt_max_integrals)
double precision :: B10(n_pt_max_integrals), B01(n_pt_max_integrals)
double precision :: t1(n_pt_max_integrals), t2(n_pt_max_integrals)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: t1, t2, B10, B01, B00
ix = a_x+b_x
jx = c_x+d_x
iy = a_y+b_y
jy = c_y+d_y
iz = a_z+b_z
jz = c_z+d_z
sx = ix+jx
sy = iy+jy
sz = iz+jz
do i = 1,n_pt
B10(i) = p10_1 - gauleg_t2(i,j)* p10_2
B01(i) = p01_1 - gauleg_t2(i,j)* p01_2
B00(i) = gauleg_t2(i,j)*pq_inv
enddo
if (sx > 0) then
call I_x1_new(ix,jx,B10,B01,B00,t1,n_pt)
else
do i = 1,n_pt
t1(i) = 1.d0
enddo
endif
if (sy > 0) then
call I_x1_new(iy,jy,B10,B01,B00,t2,n_pt)
do i = 1,n_pt
t1(i) = t1(i)*t2(i)
enddo
endif
if (sz > 0) then
call I_x1_new(iz,jz,B10,B01,B00,t2,n_pt)
do i = 1,n_pt
t1(i) = t1(i)*t2(i)
enddo
endif
I_f= 0.d0
do i = 1,n_pt
I_f += gauleg_w(i,j)*t1(i)
enddo
end
recursive subroutine I_x1_new(a,c,B_10,B_01,B_00,res,n_pt)
BEGIN_DOC
! recursive function involved in the two-electron integral
END_DOC
implicit none
include 'utils/constants.include.F'
integer, intent(in) :: a,c,n_pt
double precision, intent(in) :: B_10(n_pt_max_integrals),B_01(n_pt_max_integrals),B_00(n_pt_max_integrals)
double precision, intent(out) :: res(n_pt_max_integrals)
double precision :: res2(n_pt_max_integrals)
integer :: i
if(c<0)then
do i=1,n_pt
res(i) = 0.d0
enddo
else if (a==0) then
call I_x2_new(c,B_10,B_01,B_00,res,n_pt)
else if (a==1) then
call I_x2_new(c-1,B_10,B_01,B_00,res,n_pt)
do i=1,n_pt
res(i) = c * B_00(i) * res(i)
enddo
else
call I_x1_new(a-2,c,B_10,B_01,B_00,res,n_pt)
call I_x1_new(a-1,c-1,B_10,B_01,B_00,res2,n_pt)
do i=1,n_pt
res(i) = (a-1) * B_10(i) * res(i) &
+ c * B_00(i) * res2(i)
enddo
endif
end
recursive subroutine I_x2_new(c,B_10,B_01,B_00,res,n_pt)
implicit none
BEGIN_DOC
! recursive function involved in the two-electron integral
END_DOC
include 'utils/constants.include.F'
integer, intent(in) :: c, n_pt
double precision, intent(in) :: B_10(n_pt_max_integrals),B_01(n_pt_max_integrals),B_00(n_pt_max_integrals)
double precision, intent(out) :: res(n_pt_max_integrals)
integer :: i
if(c==1)then
do i=1,n_pt
res(i) = 0.d0
enddo
elseif(c==0) then
do i=1,n_pt
res(i) = 1.d0
enddo
else
call I_x1_new(0,c-2,B_10,B_01,B_00,res,n_pt)
do i=1,n_pt
res(i) = (c-1) * B_01(i) * res(i)
enddo
endif
end
integer function n_pt_sup(a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z)
implicit none
BEGIN_DOC
! Returns the upper boundary of the degree of the polynomial involved in the
! two-electron integral :
!
! $I_x(a_x,b_x,c_x,d_x) \, I_y(a_y,b_y,c_y,d_y) \, I_z(a_z,b_z,c_z,d_z)$
END_DOC
integer :: a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z
n_pt_sup = shiftl( a_x+b_x+c_x+d_x + a_y+b_y+c_y+d_y + a_z+b_z+c_z+d_z,1 )
end
subroutine give_polynom_mult_center_x(P_center,Q_center,a_x,d_x,p,q,n_pt_in,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,d,n_pt_out)
implicit none
BEGIN_DOC
! subroutine that returns the explicit polynom in term of the "t"
! variable of the following polynomw :
!
! $I_{x_1}(a_x,d_x,p,q) \, I_{x_1}(a_y,d_y,p,q) \ I_{x_1}(a_z,d_z,p,q)$
END_DOC
integer, intent(in) :: n_pt_in
integer,intent(out) :: n_pt_out
integer, intent(in) :: a_x,d_x
double precision, intent(in) :: P_center, Q_center
double precision, intent(in) :: p,q,pq_inv,p10_1,p01_1,p10_2,p01_2,pq_inv_2
include 'utils/constants.include.F'
double precision,intent(out) :: d(0:max_dim)
double precision :: accu
accu = 0.d0
ASSERT (n_pt_in >= 0)
! pq_inv = 0.5d0/(p+q)
! pq_inv_2 = 1.d0/(p+q)
! p10_1 = 0.5d0/p
! p01_1 = 0.5d0/q
! p10_2 = 0.5d0 * q /(p * q + p * p)
! p01_2 = 0.5d0 * p /(q * q + q * p)
double precision :: B10(0:2), B01(0:2), B00(0:2),C00(0:2),D00(0:2)
B10(0) = p10_1
B10(1) = 0.d0
B10(2) = - p10_2
! B10 = p01_1 - t**2 * p10_2
B01(0) = p01_1
B01(1) = 0.d0
B01(2) = - p01_2
! B01 = p01_1- t**2 * pq_inv
B00(0) = 0.d0
B00(1) = 0.d0
B00(2) = pq_inv
! B00 = t**2 * pq_inv
do i = 0,n_pt_in
d(i) = 0.d0
enddo
integer :: n_pt1,dim,i
n_pt1 = n_pt_in
! C00 = -q/(p+q)*(Px-Qx) * t^2
C00(0) = 0.d0
C00(1) = 0.d0
C00(2) = -q*(P_center-Q_center) * pq_inv_2
! D00 = -p/(p+q)*(Px-Qx) * t^2
D00(0) = 0.d0
D00(1) = 0.d0
D00(2) = -p*(Q_center-P_center) * pq_inv_2
!D00(2) = -p*(Q_center(1)-P_center(1)) /(p+q)
!DIR$ FORCEINLINE
call I_x1_pol_mult(a_x,d_x,B10,B01,B00,C00,D00,d,n_pt1,n_pt_in)
n_pt_out = n_pt1
if(n_pt1<0)then
n_pt_out = -1
do i = 0,n_pt_in
d(i) = 0.d0
enddo
return
endif
end
subroutine I_x1_pol_mult(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
implicit none
BEGIN_DOC
! Recursive function involved in the two-electron integral
END_DOC
integer , intent(in) :: n_pt_in
include 'utils/constants.include.F'
double precision,intent(inout) :: d(0:max_dim)
integer,intent(inout) :: nd
integer, intent(in) :: a,c
double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2)
if( (c>=0).and.(nd>=0) )then
if (a==1) then
call I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
else if (a==2) then
call I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
else if (a>2) then
call I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
else ! a == 0
if( c==0 )then
nd = 0
d(0) = 1.d0
return
endif
call I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
endif
else
nd = -1
endif
end
recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
implicit none
BEGIN_DOC
! Recursive function involved in the two-electron integral
END_DOC
integer , intent(in) :: n_pt_in
include 'utils/constants.include.F'
double precision,intent(inout) :: d(0:max_dim)
integer,intent(inout) :: nd
integer, intent(in) :: a,c
double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2)
double precision :: X(0:max_dim)
double precision :: Y(0:max_dim)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X,Y
integer :: nx, ix,iy,ny,ib
ASSERT (a>2)
!DIR$ LOOP COUNT(8)
do ix=0,n_pt_in
X(ix) = 0.d0
enddo
nx = 0
if (a==3) then
call I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
else if (a==4) then
call I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
else
ASSERT (a>=5)
call I_x1_pol_mult_recurs(a-2,c,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
endif
!DIR$ LOOP COUNT(8)
do ix=0,nx
X(ix) *= dble(a-1)
enddo
! !DIR$ FORCEINLINE
! call multiply_poly_c2_inline_2e(X,nx,B_10,d,nd)
if (nx >= 0) then
select case (nx)
case (0)
d(0) = d(0) + B_10(0) * X(0)
d(1) = d(1) + B_10(1) * X(0)
d(2) = d(2) + B_10(2) * X(0)
case (1)
d(0) = d(0) + B_10(0) * X(0)
d(1) = d(1) + B_10(0) * X(1) + B_10(1) * X(0)
d(2) = d(2) + B_10(1) * X(1) + B_10(2) * X(0)
d(3) = d(3) + B_10(2) * X(1)
case (2)
d(0) = d(0) + B_10(0) * X(0)
d(1) = d(1) + B_10(0) * X(1) + B_10(1) * X(0)
d(2) = d(2) + B_10(0) * X(2) + B_10(1) * X(1) + B_10(2) * X(0)
d(3) = d(3) + B_10(1) * X(2) + B_10(2) * X(1)
d(4) = d(4) + B_10(2) * X(2)
case default
d(0) = d(0) + B_10(0) * X(0)
d(1) = d(1) + B_10(0) * X(1) + B_10(1) * X(0)
do ib=2,nx
d(ib) = d(ib) + B_10(0) * X(ib) + B_10(1) * X(ib-1) + B_10(2) * X(ib-2)
enddo
d(nx+1) = d(nx+1) + B_10(1) * X(nx) + B_10(2) * X(nx-1)
d(nx+2) = d(nx+2) + B_10(2) * X(nx)
end select
do nd = nx+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
nx = nd
!DIR$ LOOP COUNT(8)
do ix=0,n_pt_in
X(ix) = 0.d0
enddo
if (c>0) then
if (a==3) then
call I_x1_pol_mult_a2(c-1,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
else
ASSERT(a >= 4)
call I_x1_pol_mult_recurs(a-1,c-1,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
endif
if (c>1) then
!DIR$ LOOP COUNT(8)
do ix=0,nx
X(ix) *= c
enddo
endif
! !DIR$ FORCEINLINE
! call multiply_poly_c2_inline_2e(X,nx,B_00,d,nd)
if(nx >= 0) then
select case (nx)
case (0)
d(0) = d(0) + B_00(0) * X(0)
d(1) = d(1) + B_00(1) * X(0)
d(2) = d(2) + B_00(2) * X(0)
case (1)
d(0) = d(0) + B_00(0) * X(0)
d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0)
d(2) = d(2) + B_00(1) * X(1) + B_00(2) * X(0)
d(3) = d(3) + B_00(2) * X(1)
case (2)
d(0) = d(0) + B_00(0) * X(0)
d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0)
d(2) = d(2) + B_00(0) * X(2) + B_00(1) * X(1) + B_00(2) * X(0)
d(3) = d(3) + B_00(1) * X(2) + B_00(2) * X(1)
d(4) = d(4) + B_00(2) * X(2)
case default
d(0) = d(0) + B_00(0) * X(0)
d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0)
do ib=2,nx
d(ib) = d(ib) + B_00(0) * X(ib) + B_00(1) * X(ib-1) + B_00(2) * X(ib-2)
enddo
d(nx+1) = d(nx+1) + B_00(1) * X(nx) + B_00(2) * X(nx-1)
d(nx+2) = d(nx+2) + B_00(2) * X(nx)
end select
do nd = nx+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
endif
ny=0
!DIR$ LOOP COUNT(8)
do ix=0,n_pt_in
Y(ix) = 0.d0
enddo
ASSERT(a > 2)
if (a==3) then
call I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in)
else
ASSERT(a >= 4)
call I_x1_pol_mult_recurs(a-1,c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in)
endif
! !DIR$ FORCEINLINE
! call multiply_poly_c2_inline_2e(Y,ny,C_00,d,nd)
if(ny >= 0) then
select case (ny)
case (0)
d(0) = d(0) + C_00(0) * Y(0)
d(1) = d(1) + C_00(1) * Y(0)
d(2) = d(2) + C_00(2) * Y(0)
case (1)
d(0) = d(0) + C_00(0) * Y(0)
d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0)
d(2) = d(2) + C_00(1) * Y(1) + C_00(2) * Y(0)
d(3) = d(3) + C_00(2) * Y(1)
case (2)
d(0) = d(0) + C_00(0) * Y(0)
d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0)
d(2) = d(2) + C_00(0) * Y(2) + C_00(1) * Y(1) + C_00(2) * Y(0)
d(3) = d(3) + C_00(1) * Y(2) + C_00(2) * Y(1)
d(4) = d(4) + C_00(2) * Y(2)
case default
d(0) = d(0) + C_00(0) * Y(0)
d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0)
do ib=2,ny
d(ib) = d(ib) + C_00(0) * Y(ib) + C_00(1) * Y(ib-1) + C_00(2) * Y(ib-2)
enddo
d(ny+1) = d(ny+1) + C_00(1) * Y(ny) + C_00(2) * Y(ny-1)
d(ny+2) = d(ny+2) + C_00(2) * Y(ny)
end select
do nd = ny+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
end
recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
implicit none
BEGIN_DOC
! Recursive function involved in the two-electron integral
END_DOC
integer , intent(in) :: n_pt_in
include 'utils/constants.include.F'
double precision,intent(inout) :: d(0:max_dim)
integer,intent(inout) :: nd
integer, intent(in) :: c
double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2)
double precision :: X(0:max_dim)
double precision :: Y(0:max_dim)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X,Y
integer :: nx, ix,iy,ny,ib
if( (c<0).or.(nd<0) )then
nd = -1
return
endif
nx = nd
!DIR$ LOOP COUNT(8)
do ix=0,n_pt_in
X(ix) = 0.d0
enddo
call I_x2_pol_mult(c-1,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
if (c>1) then
!DIR$ LOOP COUNT(8)
do ix=0,nx
X(ix) *= dble(c)
enddo
endif
! !DIR$ FORCEINLINE
! call multiply_poly_c2_inline_2e(X,nx,B_00,d,nd)
if(nx >= 0) then
select case (nx)
case (0)
d(0) = d(0) + B_00(0) * X(0)
d(1) = d(1) + B_00(1) * X(0)
d(2) = d(2) + B_00(2) * X(0)
case (1)
d(0) = d(0) + B_00(0) * X(0)
d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0)
d(2) = d(2) + B_00(1) * X(1) + B_00(2) * X(0)
d(3) = d(3) + B_00(2) * X(1)
case (2)
d(0) = d(0) + B_00(0) * X(0)
d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0)
d(2) = d(2) + B_00(0) * X(2) + B_00(1) * X(1) + B_00(2) * X(0)
d(3) = d(3) + B_00(1) * X(2) + B_00(2) * X(1)
d(4) = d(4) + B_00(2) * X(2)
case default
d(0) = d(0) + B_00(0) * X(0)
d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0)
do ib=2,nx
d(ib) = d(ib) + B_00(0) * X(ib) + B_00(1) * X(ib-1) + B_00(2) * X(ib-2)
enddo
d(nx+1) = d(nx+1) + B_00(1) * X(nx) + B_00(2) * X(nx-1)
d(nx+2) = d(nx+2) + B_00(2) * X(nx)
end select
do nd = nx+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
ny=0
!DIR$ LOOP COUNT(8)
do ix=0,n_pt_in
Y(ix) = 0.d0
enddo
call I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in)
! !DIR$ FORCEINLINE
! call multiply_poly_c2_inline_2e(Y,ny,C_00,d,nd)
if(ny >= 0) then
select case (ny)
case (0)
d(0) = d(0) + C_00(0) * Y(0)
d(1) = d(1) + C_00(1) * Y(0)
d(2) = d(2) + C_00(2) * Y(0)
case (1)
d(0) = d(0) + C_00(0) * Y(0)
d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0)
d(2) = d(2) + C_00(1) * Y(1) + C_00(2) * Y(0)
d(3) = d(3) + C_00(2) * Y(1)
case (2)
d(0) = d(0) + C_00(0) * Y(0)
d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0)
d(2) = d(2) + C_00(0) * Y(2) + C_00(1) * Y(1) + C_00(2) * Y(0)
d(3) = d(3) + C_00(1) * Y(2) + C_00(2) * Y(1)
d(4) = d(4) + C_00(2) * Y(2)
case default
d(0) = d(0) + C_00(0) * Y(0)
d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0)
do ib=2,ny
d(ib) = d(ib) + C_00(0) * Y(ib) + C_00(1) * Y(ib-1) + C_00(2) * Y(ib-2)
enddo
d(ny+1) = d(ny+1) + C_00(1) * Y(ny) + C_00(2) * Y(ny-1)
d(ny+2) = d(ny+2) + C_00(2) * Y(ny)
end select
do nd = ny+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
end
recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
implicit none
BEGIN_DOC
! Recursive function involved in the two-electron integral
END_DOC
integer , intent(in) :: n_pt_in
include 'utils/constants.include.F'
double precision,intent(inout) :: d(0:max_dim)
integer,intent(inout) :: nd
integer, intent(in) :: c
double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2)
double precision :: X(0:max_dim)
double precision :: Y(0:max_dim)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X,Y
integer :: nx, ix,iy,ny,ib
!DIR$ LOOP COUNT(8)
do ix=0,n_pt_in
X(ix) = 0.d0
enddo
nx = 0
call I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
! !DIR$ FORCEINLINE
! call multiply_poly_c2_inline_2e(X,nx,B_10,d,nd)
if(nx >= 0) then
select case (nx)
case (0)
d(0) = d(0) + B_10(0) * X(0)
d(1) = d(1) + B_10(1) * X(0)
d(2) = d(2) + B_10(2) * X(0)
case (1)
d(0) = d(0) + B_10(0) * X(0)
d(1) = d(1) + B_10(0) * X(1) + B_10(1) * X(0)
d(2) = d(2) + B_10(1) * X(1) + B_10(2) * X(0)
d(3) = d(3) + B_10(2) * X(1)
case (2)
d(0) = d(0) + B_10(0) * X(0)
d(1) = d(1) + B_10(0) * X(1) + B_10(1) * X(0)
d(2) = d(2) + B_10(0) * X(2) + B_10(1) * X(1) + B_10(2) * X(0)
d(3) = d(3) + B_10(1) * X(2) + B_10(2) * X(1)
d(4) = d(4) + B_10(2) * X(2)
case default
d(0) = d(0) + B_10(0) * X(0)
d(1) = d(1) + B_10(0) * X(1) + B_10(1) * X(0)
do ib=2,nx
d(ib) = d(ib) + B_10(0) * X(ib) + B_10(1) * X(ib-1) + B_10(2) * X(ib-2)
enddo
d(nx+1) = d(nx+1) + B_10(1) * X(nx) + B_10(2) * X(nx-1)
d(nx+2) = d(nx+2) + B_10(2) * X(nx)
end select
do nd = nx+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
nx = nd
!DIR$ LOOP COUNT(8)
do ix=0,n_pt_in
X(ix) = 0.d0
enddo
!DIR$ FORCEINLINE
call I_x1_pol_mult_a1(c-1,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
if (c>1) then
!DIR$ LOOP COUNT(8)
do ix=0,nx
X(ix) *= dble(c)
enddo
endif
! !DIR$ FORCEINLINE
! call multiply_poly_c2_inline_2e(X,nx,B_00,d,nd)
if(nx >= 0) then
select case (nx)
case (0)
d(0) = d(0) + B_00(0) * X(0)
d(1) = d(1) + B_00(1) * X(0)
d(2) = d(2) + B_00(2) * X(0)
case (1)
d(0) = d(0) + B_00(0) * X(0)
d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0)
d(2) = d(2) + B_00(1) * X(1) + B_00(2) * X(0)
d(3) = d(3) + B_00(2) * X(1)
case (2)
d(0) = d(0) + B_00(0) * X(0)
d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0)
d(2) = d(2) + B_00(0) * X(2) + B_00(1) * X(1) + B_00(2) * X(0)
d(3) = d(3) + B_00(1) * X(2) + B_00(2) * X(1)
d(4) = d(4) + B_00(2) * X(2)
case default
d(0) = d(0) + B_00(0) * X(0)
d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0)
do ib=2,nx
d(ib) = d(ib) + B_00(0) * X(ib) + B_00(1) * X(ib-1) + B_00(2) * X(ib-2)
enddo
d(nx+1) = d(nx+1) + B_00(1) * X(nx) + B_00(2) * X(nx-1)
d(nx+2) = d(nx+2) + B_00(2) * X(nx)
end select
do nd = nx+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
ny=0
!DIR$ LOOP COUNT(8)
do ix=0,n_pt_in
Y(ix) = 0.d0
enddo
!DIR$ FORCEINLINE
call I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in)
! !DIR$ FORCEINLINE
! call multiply_poly_c2_inline_2e(Y,ny,C_00,d,nd)
if(ny >= 0) then
select case (ny)
case (0)
d(0) = d(0) + C_00(0) * Y(0)
d(1) = d(1) + C_00(1) * Y(0)
d(2) = d(2) + C_00(2) * Y(0)
case (1)
d(0) = d(0) + C_00(0) * Y(0)
d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0)
d(2) = d(2) + C_00(1) * Y(1) + C_00(2) * Y(0)
d(3) = d(3) + C_00(2) * Y(1)
case (2)
d(0) = d(0) + C_00(0) * Y(0)
d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0)
d(2) = d(2) + C_00(0) * Y(2) + C_00(1) * Y(1) + C_00(2) * Y(0)
d(3) = d(3) + C_00(1) * Y(2) + C_00(2) * Y(1)
d(4) = d(4) + C_00(2) * Y(2)
case default
d(0) = d(0) + C_00(0) * Y(0)
d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0)
do ib=2,ny
d(ib) = d(ib) + C_00(0) * Y(ib) + C_00(1) * Y(ib-1) + C_00(2) * Y(ib-2)
enddo
d(ny+1) = d(ny+1) + C_00(1) * Y(ny) + C_00(2) * Y(ny-1)
d(ny+2) = d(ny+2) + C_00(2) * Y(ny)
end select
do nd = ny+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
end
recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim)
implicit none
BEGIN_DOC
! Recursive function involved in the two-electron integral
END_DOC
integer , intent(in) :: dim
include 'utils/constants.include.F'
double precision :: d(0:max_dim)
integer,intent(inout) :: nd
integer, intent(in) :: c
double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2)
integer :: nx, ix,ny
double precision :: X(0:max_dim),Y(0:max_dim)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X, Y
integer :: i, ib
select case (c)
case (0)
nd = 0
d(0) = 1.d0
return
case (:-1)
nd = -1
return
case (1)
nd = 2
d(0) = D_00(0)
d(1) = D_00(1)
d(2) = D_00(2)
return
case (2)
nd = 2
d(0) = B_01(0)
d(1) = B_01(1)
d(2) = B_01(2)
ny = 2
Y(0) = D_00(0)
Y(1) = D_00(1)
Y(2) = D_00(2)
! !DIR$ FORCEINLINE
! call multiply_poly_c2_inline_2e(Y,ny,D_00,d,nd)
if(ny >= 0) then
select case (ny)
case (0)
d(0) = d(0) + D_00(0) * Y(0)
d(1) = d(1) + D_00(1) * Y(0)
d(2) = d(2) + D_00(2) * Y(0)
case (1)
d(0) = d(0) + D_00(0) * Y(0)
d(1) = d(1) + D_00(0) * Y(1) + D_00(1) * Y(0)
d(2) = d(2) + D_00(1) * Y(1) + D_00(2) * Y(0)
d(3) = d(3) + D_00(2) * Y(1)
case (2)
d(0) = d(0) + D_00(0) * Y(0)
d(1) = d(1) + D_00(0) * Y(1) + D_00(1) * Y(0)
d(2) = d(2) + D_00(0) * Y(2) + D_00(1) * Y(1) + D_00(2) * Y(0)
d(3) = d(3) + D_00(1) * Y(2) + D_00(2) * Y(1)
d(4) = d(4) + D_00(2) * Y(2)
case default
d(0) = d(0) + D_00(0) * Y(0)
d(1) = d(1) + D_00(0) * Y(1) + D_00(1) * Y(0)
do ib=2,ny
d(ib) = d(ib) + D_00(0) * Y(ib) + D_00(1) * Y(ib-1) + D_00(2) * Y(ib-2)
enddo
d(ny+1) = d(ny+1) + D_00(1) * Y(ny) + D_00(2) * Y(ny-1)
d(ny+2) = d(ny+2) + D_00(2) * Y(ny)
end select
do nd = ny+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
return
case default
!DIR$ LOOP COUNT(6)
do ix=0,c+c
X(ix) = 0.d0
enddo
nx = 0
call I_x2_pol_mult(c-2,B_10,B_01,B_00,C_00,D_00,X,nx,dim)
!DIR$ LOOP COUNT(6)
do ix=0,nx
X(ix) *= dble(c-1)
enddo
! !DIR$ FORCEINLINE
! call multiply_poly_c2_inline_2e(X,nx,B_01,d,nd)
if(nx >= 0) then
select case (nx)
case (0)
d(0) = d(0) + B_01(0) * X(0)
d(1) = d(1) + B_01(1) * X(0)
d(2) = d(2) + B_01(2) * X(0)
case (1)
d(0) = d(0) + B_01(0) * X(0)
d(1) = d(1) + B_01(0) * X(1) + B_01(1) * X(0)
d(2) = d(2) + B_01(1) * X(1) + B_01(2) * X(0)
d(3) = d(3) + B_01(2) * X(1)
case (2)
d(0) = d(0) + B_01(0) * X(0)
d(1) = d(1) + B_01(0) * X(1) + B_01(1) * X(0)
d(2) = d(2) + B_01(0) * X(2) + B_01(1) * X(1) + B_01(2) * X(0)
d(3) = d(3) + B_01(1) * X(2) + B_01(2) * X(1)
d(4) = d(4) + B_01(2) * X(2)
case default
d(0) = d(0) + B_01(0) * X(0)
d(1) = d(1) + B_01(0) * X(1) + B_01(1) * X(0)
do ib=2,nx
d(ib) = d(ib) + B_01(0) * X(ib) + B_01(1) * X(ib-1) + B_01(2) * X(ib-2)
enddo
d(nx+1) = d(nx+1) + B_01(1) * X(nx) + B_01(2) * X(nx-1)
d(nx+2) = d(nx+2) + B_01(2) * X(nx)
end select
do nd = nx+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
ny = 0
!DIR$ LOOP COUNT(6)
do ix=0,c+c
Y(ix) = 0.d0
enddo
call I_x2_pol_mult(c-1,B_10,B_01,B_00,C_00,D_00,Y,ny,dim)
! !DIR$ FORCEINLINE
! call multiply_poly_c2_inline_2e(Y,ny,D_00,d,nd)
if(ny >= 0) then
select case (ny)
case (0)
d(0) = d(0) + D_00(0) * Y(0)
d(1) = d(1) + D_00(1) * Y(0)
d(2) = d(2) + D_00(2) * Y(0)
case (1)
d(0) = d(0) + D_00(0) * Y(0)
d(1) = d(1) + D_00(0) * Y(1) + D_00(1) * Y(0)
d(2) = d(2) + D_00(1) * Y(1) + D_00(2) * Y(0)
d(3) = d(3) + D_00(2) * Y(1)
case (2)
d(0) = d(0) + D_00(0) * Y(0)
d(1) = d(1) + D_00(0) * Y(1) + D_00(1) * Y(0)
d(2) = d(2) + D_00(0) * Y(2) + D_00(1) * Y(1) + D_00(2) * Y(0)
d(3) = d(3) + D_00(1) * Y(2) + D_00(2) * Y(1)
d(4) = d(4) + D_00(2) * Y(2)
case default
d(0) = d(0) + D_00(0) * Y(0)
d(1) = d(1) + D_00(0) * Y(1) + D_00(1) * Y(0)
do ib=2,ny
d(ib) = d(ib) + D_00(0) * Y(ib) + D_00(1) * Y(ib-1) + D_00(2) * Y(ib-2)
enddo
d(ny+1) = d(ny+1) + D_00(1) * Y(ny) + D_00(2) * Y(ny-1)
d(ny+2) = d(ny+2) + D_00(2) * Y(ny)
end select
do nd = ny+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
end select
end
subroutine compute_ao_integrals_jl(j,l,n_integrals,buffer_i,buffer_value)
implicit none
use map_module
BEGIN_DOC
! Parallel client for AO integrals
END_DOC
integer, intent(in) :: j,l
integer,intent(out) :: n_integrals
integer(key_kind),intent(out) :: buffer_i(ao_num*ao_num)
real(integral_kind),intent(out) :: buffer_value(ao_num*ao_num)
logical, external :: ao_two_e_integral_zero
integer :: i,k
double precision, external :: ao_two_e_integral
double precision :: cpu_1,cpu_2, wall_1, wall_2
double precision :: integral, wall_0
double precision :: thr
integer :: kk, m, j1, i1
thr = ao_integrals_threshold
n_integrals = 0
j1 = j+shiftr(l*l-l,1)
do k = 1, ao_num ! r1
i1 = shiftr(k*k-k,1)
if (i1 > j1) then
exit
endif
do i = 1, k
i1 += 1
if (i1 > j1) then
exit
endif
if (ao_two_e_integral_zero(i,j,k,l)) then
cycle
endif
!DIR$ FORCEINLINE
integral = ao_two_e_integral(i,k,j,l) ! i,k : r1 j,l : r2
if (abs(integral) < thr) then
cycle
endif
n_integrals += 1
!DIR$ FORCEINLINE
call two_e_integrals_index(i,j,k,l,buffer_i(n_integrals))
buffer_value(n_integrals) = integral
enddo
enddo
end
subroutine multiply_poly_local(b,nb,c,nc,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nb, nc
integer, intent(out) :: nd
double precision, intent(in) :: b(0:nb), c(0:nc)
double precision, intent(inout) :: d(0:nb+nc)
integer :: ndtmp
integer :: ib, ic, id, k
if(ior(nc,nb) < 0) return !False if nc>=0 and nb>=0
do ib=0,nb
do ic = 0,nc
d(ib+ic) = d(ib+ic) + c(ic) * b(ib)
enddo
enddo
do nd = nb+nc,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
!DIR$ FORCEINLINE
subroutine multiply_poly_c2_inline_2e(b,nb,c,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nb
integer, intent(out) :: nd
double precision, intent(in) :: b(0:nb), c(0:2)
double precision, intent(inout) :: d(0:nb+2)
integer :: ndtmp
integer :: ib, ic, id, k
if(nb < 0) return !False if nb>=0
select case (nb)
case (0)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(1) * b(0)
d(2) = d(2) + c(2) * b(0)
case (1)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
d(2) = d(2) + c(1) * b(1) + c(2) * b(0)
d(3) = d(3) + c(2) * b(1)
case (2)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
d(2) = d(2) + c(0) * b(2) + c(1) * b(1) + c(2) * b(0)
d(3) = d(3) + c(1) * b(2) + c(2) * b(1)
d(4) = d(4) + c(2) * b(2)
case default
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
do ib=2,nb
d(ib) = d(ib) + c(0) * b(ib) + c(1) * b(ib-1) + c(2) * b(ib-2)
enddo
d(nb+1) = d(nb+1) + c(1) * b(nb) + c(2) * b(nb-1)
d(nb+2) = d(nb+2) + c(2) * b(nb)
end select
do nd = nb+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
end