subroutine orb_range_all_states_two_rdm(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_0,N_st,sze) use bitmasks implicit none BEGIN_DOC ! if ispin == 1 :: alpha/alpha 2rdm ! == 2 :: beta /beta 2rdm ! == 3 :: alpha/beta 2rdm ! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba)) ! ! Assumes that the determinants are in psi_det ! ! istart, iend, ishift, istep are used in ZMQ parallelization. END_DOC integer, intent(in) :: N_st,sze integer, intent(in) :: dim1,norb,list_orb(norb),ispin integer, intent(in) :: list_orb_reverse(mo_num) double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1,N_st) double precision, intent(in) :: u_0(sze,N_st) integer :: k double precision, allocatable :: u_t(:,:) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t allocate(u_t(N_st,N_det)) do k=1,N_st call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det) enddo call dtranspose( & u_0, & size(u_0, 1), & u_t, & size(u_t, 1), & N_det, N_st) call orb_range_all_states_two_rdm_work(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,1,N_det,0,1) deallocate(u_t) do k=1,N_st call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det) enddo end subroutine orb_range_all_states_two_rdm_work(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,istart,iend,ishift,istep) use bitmasks implicit none BEGIN_DOC ! Computes two-rdm ! ! Default should be 1,N_det,0,1 END_DOC integer, intent(in) :: N_st,sze,istart,iend,ishift,istep integer, intent(in) :: dim1,norb,list_orb(norb),ispin integer, intent(in) :: list_orb_reverse(mo_num) double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1,N_st) double precision, intent(in) :: u_t(N_st,N_det) integer :: k PROVIDE N_int select case (N_int) case (1) call orb_range_all_states_two_rdm_work_1(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,istart,iend,ishift,istep) case (2) call orb_range_all_states_two_rdm_work_2(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,istart,iend,ishift,istep) case (3) call orb_range_all_states_two_rdm_work_3(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,istart,iend,ishift,istep) case (4) call orb_range_all_states_two_rdm_work_4(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,istart,iend,ishift,istep) case default call orb_range_all_states_two_rdm_work_N_int(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,istart,iend,ishift,istep) end select end BEGIN_TEMPLATE subroutine orb_range_all_states_two_rdm_work_$N_int(big_array,dim1,norb,list_orb,list_orb_reverse,ispin,u_t,N_st,sze,istart,iend,ishift,istep) use bitmasks implicit none BEGIN_DOC ! Computes the two rdm for the N_st vectors |u_t> ! if ispin == 1 :: alpha/alpha 2rdm ! == 2 :: beta /beta 2rdm ! == 3 :: alpha/beta 2rdm ! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba)) ! The 2rdm will be computed only on the list of orbitals list_orb, which contains norb ! Default should be 1,N_det,0,1 for istart,iend,ishift,istep END_DOC integer, intent(in) :: N_st,sze,istart,iend,ishift,istep double precision, intent(in) :: u_t(N_st,N_det) integer, intent(in) :: dim1,norb,list_orb(norb),ispin integer, intent(in) :: list_orb_reverse(mo_num) double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1,N_st) integer :: i,j,k,l integer :: k_a, k_b, l_a, l_b, m_a, m_b integer :: istate integer :: krow, kcol, krow_b, kcol_b integer :: lrow, lcol integer :: mrow, mcol integer(bit_kind) :: spindet($N_int) integer(bit_kind) :: tmp_det($N_int,2) integer(bit_kind) :: tmp_det2($N_int,2) integer(bit_kind) :: tmp_det3($N_int,2) integer(bit_kind), allocatable :: buffer(:,:) integer :: n_doubles integer, allocatable :: doubles(:) integer, allocatable :: singles_a(:) integer, allocatable :: singles_b(:) integer, allocatable :: idx(:), idx0(:) integer :: maxab, n_singles_a, n_singles_b, kcol_prev integer*8 :: k8 double precision,allocatable :: c_contrib(:) logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace integer(bit_kind) :: orb_bitmask($N_int) alpha_alpha = .False. beta_beta = .False. alpha_beta = .False. spin_trace = .False. if( ispin == 1)then alpha_alpha = .True. else if(ispin == 2)then beta_beta = .True. else if(ispin == 3)then alpha_beta = .True. else if(ispin == 4)then spin_trace = .True. else print*,'Wrong parameter for ispin in general_two_rdm_dm_nstates_work' print*,'ispin = ',ispin stop endif PROVIDE N_int call list_to_bitstring( orb_bitmask, list_orb, norb, N_int) maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 allocate(idx0(maxab)) do i=1,maxab idx0(i) = i enddo ! Prepare the array of all alpha single excitations ! ------------------------------------------------- PROVIDE N_int nthreads_davidson !!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) & ! !$OMP SHARED(psi_bilinear_matrix_rows, N_det, & ! !$OMP psi_bilinear_matrix_columns, & ! !$OMP psi_det_alpha_unique, psi_det_beta_unique,& ! !$OMP n_det_alpha_unique, n_det_beta_unique, N_int,& ! !$OMP psi_bilinear_matrix_transp_rows, & ! !$OMP psi_bilinear_matrix_transp_columns, & ! !$OMP psi_bilinear_matrix_transp_order, N_st, & ! !$OMP psi_bilinear_matrix_order_transp_reverse, & ! !$OMP psi_bilinear_matrix_columns_loc, & ! !$OMP psi_bilinear_matrix_transp_rows_loc, & ! !$OMP istart, iend, istep, irp_here, v_t, s_t, & ! !$OMP ishift, idx0, u_t, maxab) & ! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,& ! !$OMP lcol, lrow, l_a, l_b, & ! !$OMP buffer, doubles, n_doubles, & ! !$OMP tmp_det2, idx, l, kcol_prev, & ! !$OMP singles_a, n_singles_a, singles_b, & ! !$OMP n_singles_b, k8) ! Alpha/Beta double excitations ! ============================= allocate( buffer($N_int,maxab), & singles_a(maxab), & singles_b(maxab), & doubles(maxab), & idx(maxab),c_contrib(N_st)) kcol_prev=-1 ASSERT (iend <= N_det) ASSERT (istart > 0) ASSERT (istep > 0) !!$OMP DO SCHEDULE(dynamic,64) do k_a=istart+ishift,iend,istep krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) if (kcol /= kcol_prev) then call get_all_spin_singles_$N_int( & psi_det_beta_unique, idx0, & tmp_det(1,2), N_det_beta_unique, & singles_b, n_singles_b) endif kcol_prev = kcol ! Loop over singly excited beta columns ! ------------------------------------- do i=1,n_singles_b lcol = singles_b(i) tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) l_a = psi_bilinear_matrix_columns_loc(lcol) ASSERT (l_a <= N_det) do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) ASSERT (l_a <= N_det) idx(j) = l_a l_a = l_a+1 enddo j = j-1 call get_all_spin_singles_$N_int( & buffer, idx, tmp_det(1,1), j, & singles_a, n_singles_a ) ! Loop over alpha singles ! ----------------------- if(alpha_beta.or.spin_trace)then do k = 1,n_singles_a l_a = singles_a(k) ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) c_contrib = 0.d0 do l= 1, N_st c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) c_contrib(l) = c_1(l) * c_2(l) enddo call orb_range_off_diagonal_double_to_two_rdm_ab_dm_all_states(tmp_det,tmp_det2,c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) enddo endif enddo enddo ! !$OMP END DO ! !$OMP DO SCHEDULE(dynamic,64) do k_a=istart+ishift,iend,istep ! Single and double alpha exitations ! =================================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) ! Initial determinant is at k_b in beta-major representation ! ---------------------------------------------------------------------- k_b = psi_bilinear_matrix_order_transp_reverse(k_a) ASSERT (k_b <= N_det) spindet(1:$N_int) = tmp_det(1:$N_int,1) ! Loop inside the beta column to gather all the connected alphas lcol = psi_bilinear_matrix_columns(k_a) l_a = psi_bilinear_matrix_columns_loc(lcol) do i=1,N_det_alpha_unique if (l_a > N_det) exit lcol = psi_bilinear_matrix_columns(l_a) if (lcol /= kcol) exit lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow) idx(i) = l_a l_a = l_a+1 enddo i = i-1 call get_all_spin_singles_and_doubles_$N_int( & buffer, idx, spindet, i, & singles_a, doubles, n_singles_a, n_doubles ) ! Compute Hij for all alpha singles ! ---------------------------------- tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) do i=1,n_singles_a l_a = singles_a(i) ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) c_contrib = 0.d0 do l= 1, N_st c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) c_contrib(l) = c_1(l) * c_2(l) enddo if(alpha_beta.or.spin_trace.or.alpha_alpha)then ! increment the alpha/beta part for single excitations call orb_range_off_diagonal_single_to_two_rdm_ab_dm_all_states(tmp_det, tmp_det2,c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) ! increment the alpha/alpha part for single excitations call orb_range_off_diagonal_single_to_two_rdm_aa_dm_all_states(tmp_det,tmp_det2,c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) endif enddo ! Compute Hij for all alpha doubles ! ---------------------------------- if(alpha_alpha.or.spin_trace)then do i=1,n_doubles l_a = doubles(i) ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) c_contrib = 0.d0 do l= 1, N_st c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) c_contrib(l) += c_1(l) * c_2(l) enddo call orb_range_off_diagonal_double_to_two_rdm_aa_dm_all_states(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) enddo endif ! Single and double beta excitations ! ================================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) kcol = psi_bilinear_matrix_columns(k_a) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) spindet(1:$N_int) = tmp_det(1:$N_int,2) ! Initial determinant is at k_b in beta-major representation ! ----------------------------------------------------------------------- k_b = psi_bilinear_matrix_order_transp_reverse(k_a) ASSERT (k_b <= N_det) ! Loop inside the alpha row to gather all the connected betas lrow = psi_bilinear_matrix_transp_rows(k_b) l_b = psi_bilinear_matrix_transp_rows_loc(lrow) do i=1,N_det_beta_unique if (l_b > N_det) exit lrow = psi_bilinear_matrix_transp_rows(l_b) if (lrow /= krow) exit lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol) idx(i) = l_b l_b = l_b+1 enddo i = i-1 call get_all_spin_singles_and_doubles_$N_int( & buffer, idx, spindet, i, & singles_b, doubles, n_singles_b, n_doubles ) ! Compute Hij for all beta singles ! ---------------------------------- tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) do i=1,n_singles_b l_b = singles_b(i) ASSERT (l_b <= N_det) lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol) l_a = psi_bilinear_matrix_transp_order(l_b) c_contrib = 0.d0 do l= 1, N_st c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) c_contrib(l) = c_1(l) * c_2(l) enddo if(alpha_beta.or.spin_trace.or.beta_beta)then ! increment the alpha/beta part for single excitations call orb_range_off_diagonal_single_to_two_rdm_ab_dm_all_states(tmp_det, tmp_det2,c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) ! increment the beta /beta part for single excitations call orb_range_off_diagonal_single_to_two_rdm_bb_dm_all_states(tmp_det, tmp_det2,c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) endif enddo ! Compute Hij for all beta doubles ! ---------------------------------- if(beta_beta.or.spin_trace)then do i=1,n_doubles l_b = doubles(i) ASSERT (l_b <= N_det) lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) l_a = psi_bilinear_matrix_transp_order(l_b) c_contrib = 0.d0 do l= 1, N_st c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) c_contrib(l) = c_1(l) * c_2(l) enddo call orb_range_off_diagonal_double_to_two_rdm_bb_dm_all_states(tmp_det(1,2),psi_det_beta_unique(1, lcol),c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) ASSERT (l_a <= N_det) enddo endif ! Diagonal contribution ! ===================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) double precision, external :: diag_wee_mat_elem, diag_S_mat_elem double precision :: c_1(N_states),c_2(N_states) c_contrib = 0.d0 do l = 1, N_st c_1(l) = u_t(l,k_a) c_contrib(l) = c_1(l) * c_1(l) enddo call orb_range_diagonal_contrib_to_all_two_rdm_dm_all_states(tmp_det,c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) end do !!$OMP END DO deallocate(buffer, singles_a, singles_b, doubles, idx) !!$OMP END PARALLEL end SUBST [ N_int ] 1;; 2;; 3;; 4;; N_int;; END_TEMPLATE