BEGIN_PROVIDER [double precision, all_states_act_two_rdm_alpha_alpha_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)] implicit none double precision, allocatable :: state_weights(:) BEGIN_DOC ! all_states_act_two_rdm_alpha_alpha_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-alpha electron pairs ! = END_DOC allocate(state_weights(N_states)) state_weights = 1.d0/dble(N_states) integer :: ispin ! condition for alpha/beta spin ispin = 1 all_states_act_two_rdm_alpha_alpha_mo = 0.D0 call orb_range_all_states_two_rdm(all_states_act_two_rdm_alpha_alpha_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) END_PROVIDER BEGIN_PROVIDER [double precision, all_states_act_two_rdm_beta_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)] implicit none double precision, allocatable :: state_weights(:) BEGIN_DOC ! all_states_act_two_rdm_beta_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for beta-beta electron pairs ! = END_DOC allocate(state_weights(N_states)) state_weights = 1.d0/dble(N_states) integer :: ispin ! condition for alpha/beta spin ispin = 2 all_states_act_two_rdm_beta_beta_mo = 0.d0 call orb_range_all_states_two_rdm(all_states_act_two_rdm_beta_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) END_PROVIDER BEGIN_PROVIDER [double precision, all_states_act_two_rdm_alpha_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)] implicit none double precision, allocatable :: state_weights(:) BEGIN_DOC ! all_states_act_two_rdm_alpha_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-beta electron pairs ! = END_DOC allocate(state_weights(N_states)) state_weights = 1.d0/dble(N_states) integer :: ispin ! condition for alpha/beta spin print*,'' print*,'' print*,'' print*,'providint all_states_act_two_rdm_alpha_beta_mo ' ispin = 3 print*,'ispin = ',ispin all_states_act_two_rdm_alpha_beta_mo = 0.d0 call orb_range_all_states_two_rdm(all_states_act_two_rdm_alpha_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) END_PROVIDER BEGIN_PROVIDER [double precision, all_states_act_two_rdm_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)] implicit none BEGIN_DOC ! all_states_act_two_rdm_spin_trace_mo(i,j,k,l) = state average physicist spin trace two-body rdm restricted to the ACTIVE indices ! The active part of the two-electron energy can be computed as: ! ! \sum_{i,j,k,l = 1, n_act_orb} all_states_act_two_rdm_spin_trace_mo(i,j,k,l) * < ii jj | kk ll > ! ! with ii = list_act(i), jj = list_act(j), kk = list_act(k), ll = list_act(l) END_DOC double precision, allocatable :: state_weights(:) allocate(state_weights(N_states)) state_weights = 1.d0/dble(N_states) integer :: ispin ! condition for alpha/beta spin ispin = 4 all_states_act_two_rdm_spin_trace_mo = 0.d0 integer :: i call orb_range_all_states_two_rdm(all_states_act_two_rdm_spin_trace_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) END_PROVIDER