BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ] implicit none BEGIN_DOC ! :c:data:`n_states` lowest eigenvalues of the |CI| matrix END_DOC integer :: j character*(8) :: st call write_time(6) do j=1,min(N_det,N_states_diag) CI_energy(j) = CI_electronic_energy(j) + nuclear_repulsion enddo do j=1,min(N_det,N_states) write(st,'(I4)') j call write_double(6,CI_energy(j),'Energy of state '//trim(st)) call write_double(6,CI_s2(j),'S^2 of state '//trim(st)) enddo END_PROVIDER BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_s2, (N_states_diag) ] BEGIN_DOC ! Eigenvectors/values of the |CI| matrix END_DOC implicit none double precision :: ovrlp,u_dot_v integer :: i_good_state integer, allocatable :: index_good_state_array(:) logical, allocatable :: good_state_array(:) double precision, allocatable :: s2_values_tmp(:) integer :: i_other_state double precision, allocatable :: eigenvectors(:,:), eigenvalues(:), H_prime(:,:) integer :: i_state double precision :: e_0 integer :: i,j,k double precision, allocatable :: s2_eigvalues(:) double precision, allocatable :: e_array(:) integer, allocatable :: iorder(:) logical :: converged PROVIDE threshold_davidson nthreads_davidson ! Guess values for the "N_states" states of the |CI| eigenvectors do j=1,min(N_states,N_det) do i=1,N_det CI_eigenvectors(i,j) = psi_coef(i,j) enddo enddo do j=min(N_states,N_det)+1,N_states_diag do i=1,N_det CI_eigenvectors(i,j) = 0.d0 enddo enddo if (diag_algorithm == "Davidson") then call davidson_diag_HS2(psi_det,CI_eigenvectors, CI_s2, & size(CI_eigenvectors,1),CI_electronic_energy, & N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged) integer :: N_states_diag_save N_states_diag_save = N_states_diag do while (.not.converged) double precision, allocatable :: CI_electronic_energy_tmp (:) double precision, allocatable :: CI_eigenvectors_tmp (:,:) double precision, allocatable :: CI_s2_tmp (:) N_states_diag *= 2 TOUCH N_states_diag allocate (CI_electronic_energy_tmp (N_states_diag) ) allocate (CI_eigenvectors_tmp (N_det,N_states_diag) ) allocate (CI_s2_tmp (N_states_diag) ) CI_electronic_energy_tmp(1:N_states_diag_save) = CI_electronic_energy(1:N_states_diag_save) CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) = CI_eigenvectors(1:N_det,1:N_states_diag_save) CI_s2_tmp(1:N_states_diag_save) = CI_s2(1:N_states_diag_save) call davidson_diag_HS2(psi_det,CI_eigenvectors_tmp, CI_s2_tmp, & size(CI_eigenvectors_tmp,1),CI_electronic_energy_tmp, & N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged) CI_electronic_energy(1:N_states_diag_save) = CI_electronic_energy_tmp(1:N_states_diag_save) CI_eigenvectors(1:N_det,1:N_states_diag_save) = CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) CI_s2(1:N_states_diag_save) = CI_s2_tmp(1:N_states_diag_save) deallocate (CI_electronic_energy_tmp) deallocate (CI_eigenvectors_tmp) deallocate (CI_s2_tmp) enddo if (N_states_diag > N_states_diag_save) then N_states_diag = N_states_diag_save TOUCH N_states_diag endif else if (diag_algorithm == "Lapack") then print *, 'Diagonalization of H using Lapack' allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) allocate (eigenvalues(N_det)) if (s2_eig) then double precision, parameter :: alpha = 0.1d0 allocate (H_prime(N_det,N_det) ) H_prime(1:N_det,1:N_det) = H_matrix_all_dets(1:N_det,1:N_det) + & alpha * S2_matrix_all_dets(1:N_det,1:N_det) do j=1,N_det H_prime(j,j) = H_prime(j,j) + alpha*(S_z2_Sz - expected_s2) enddo call lapack_diag(eigenvalues,eigenvectors,H_prime,size(H_prime,1),N_det) CI_electronic_energy(:) = 0.d0 i_state = 0 allocate (s2_eigvalues(N_det)) allocate(index_good_state_array(N_det),good_state_array(N_det)) good_state_array = .False. call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,& N_det,size(eigenvectors,1)) do j=1,N_det ! Select at least n_states states with S^2 values closed to "expected_s2" if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then i_state +=1 index_good_state_array(i_state) = j good_state_array(j) = .True. endif if(i_state.eq.N_states) then exit endif enddo if(i_state .ne.0)then ! Fill the first "i_state" states that have a correct S^2 value do j = 1, i_state do i=1,N_det CI_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j)) enddo CI_electronic_energy(j) = eigenvalues(index_good_state_array(j)) CI_s2(j) = s2_eigvalues(index_good_state_array(j)) enddo i_other_state = 0 do j = 1, N_det if(good_state_array(j))cycle i_other_state +=1 if(i_state+i_other_state.gt.n_states_diag)then exit endif do i=1,N_det CI_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j) enddo CI_electronic_energy(i_state+i_other_state) = eigenvalues(j) CI_s2(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state) enddo else print*,'' print*,'!!!!!!!! WARNING !!!!!!!!!' print*,' Within the ',N_det,'determinants selected' print*,' and the ',N_states_diag,'states requested' print*,' We did not find any state with S^2 values close to ',expected_s2 print*,' We will then set the first N_states eigenvectors of the H matrix' print*,' as the CI_eigenvectors' print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space' print*,'' do j=1,min(N_states_diag,N_det) do i=1,N_det CI_eigenvectors(i,j) = eigenvectors(i,j) enddo CI_electronic_energy(j) = eigenvalues(j) CI_s2(j) = s2_eigvalues(j) enddo endif deallocate(index_good_state_array,good_state_array) deallocate(s2_eigvalues) else call lapack_diag(eigenvalues,eigenvectors, & H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) CI_electronic_energy(:) = 0.d0 call u_0_S2_u_0(CI_s2,eigenvectors,N_det,psi_det,N_int,& min(N_det,N_states_diag),size(eigenvectors,1)) ! Select the "N_states_diag" states of lowest energy do j=1,min(N_det,N_states_diag) do i=1,N_det CI_eigenvectors(i,j) = eigenvectors(i,j) enddo CI_electronic_energy(j) = eigenvalues(j) enddo endif deallocate(eigenvectors,eigenvalues) endif END_PROVIDER subroutine diagonalize_CI implicit none BEGIN_DOC ! Replace the coefficients of the |CI| states by the coefficients of the ! eigenstates of the |CI| matrix. END_DOC integer :: i,j do j=1,N_states do i=1,N_det psi_coef(i,j) = CI_eigenvectors(i,j) enddo enddo psi_energy(1:N_states) = CI_electronic_energy(1:N_states) psi_s2(1:N_states) = CI_s2(1:N_states) SOFT_TOUCH psi_coef CI_electronic_energy CI_energy CI_eigenvectors CI_s2 psi_energy psi_s2 end