use map_module integer function load_mo_integrals_erf(filename) implicit none BEGIN_DOC ! Read from disk the |MO| erf integrals END_DOC character*(*), intent(in) :: filename integer*8 :: i integer(cache_key_kind), pointer :: key(:) real(integral_kind), pointer :: val(:) integer :: iknd, kknd integer*8 :: n, j load_mo_integrals_erf = 1 open(unit=66,file=filename,FORM='unformatted',STATUS='UNKNOWN') read(66,err=98,end=98) iknd, kknd if (iknd /= integral_kind) then print *, 'Wrong integrals kind in file :', iknd stop 1 endif if (kknd /= key_kind) then print *, 'Wrong key kind in file :', kknd stop 1 endif read(66,err=98,end=98) mo_integrals_erf_map%sorted, mo_integrals_erf_map%map_size,& mo_integrals_erf_map%n_elements do i=0_8, mo_integrals_erf_map%map_size read(66,err=99,end=99) mo_integrals_erf_map%map(i)%sorted, & mo_integrals_erf_map%map(i)%map_size, mo_integrals_erf_map%map(i)%n_elements call cache_map_reallocate(mo_integrals_erf_map%map(i),mo_integrals_erf_map%map(i)%map_size) enddo do i=0_8, mo_integrals_erf_map%map_size key => mo_integrals_erf_map%map(i)%key val => mo_integrals_erf_map%map(i)%value n = mo_integrals_erf_map%map(i)%n_elements read(66,err=99,end=99) (key(j), j=1,n), (val(j), j=1,n) enddo call map_sort(mo_integrals_erf_map) load_mo_integrals_erf = 0 return 99 continue call map_deinit(mo_integrals_erf_map) 98 continue stop 'Problem reading mo_integrals_erf_map file in work/' end BEGIN_PROVIDER [ type(map_type), mo_integrals_erf_map ] implicit none BEGIN_DOC ! |MO| integrals END_DOC integer(key_kind) :: key_max integer(map_size_kind) :: sze call two_e_integrals_index(mo_num,mo_num,mo_num,mo_num,key_max) sze = key_max call map_init(mo_integrals_erf_map,sze) print*, 'MO erf map initialized' END_PROVIDER subroutine insert_into_mo_integrals_erf_map(n_integrals, & buffer_i, buffer_values, thr) use map_module implicit none BEGIN_DOC ! Create new entry into |MO| map, or accumulate in an existing entry END_DOC integer, intent(in) :: n_integrals integer(key_kind), intent(inout) :: buffer_i(n_integrals) real(integral_kind), intent(inout) :: buffer_values(n_integrals) real(integral_kind), intent(in) :: thr call map_update(mo_integrals_erf_map, buffer_i, buffer_values, n_integrals, thr) end BEGIN_PROVIDER [ integer, mo_integrals_erf_cache_min ] &BEGIN_PROVIDER [ integer, mo_integrals_erf_cache_max ] implicit none BEGIN_DOC ! Min and max values of the MOs for which the integrals are in the cache END_DOC mo_integrals_erf_cache_min = max(1,elec_alpha_num - 31) mo_integrals_erf_cache_max = min(mo_num,mo_integrals_erf_cache_min+63) END_PROVIDER BEGIN_PROVIDER [ double precision, mo_integrals_erf_cache, (0:64*64*64*64) ] implicit none BEGIN_DOC ! Cache of |MO| integrals for fast access END_DOC PROVIDE mo_two_e_integrals_erf_in_map integer :: i,j,k,l integer :: ii integer(key_kind) :: idx real(integral_kind) :: integral FREE ao_integrals_erf_cache !$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral) do l=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max do k=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max do j=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max do i=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max !DIR$ FORCEINLINE call two_e_integrals_index(i,j,k,l,idx) !DIR$ FORCEINLINE call map_get(mo_integrals_erf_map,idx,integral) ii = l-mo_integrals_erf_cache_min ii = ior( ishft(ii,6), k-mo_integrals_erf_cache_min) ii = ior( ishft(ii,6), j-mo_integrals_erf_cache_min) ii = ior( ishft(ii,6), i-mo_integrals_erf_cache_min) mo_integrals_erf_cache(ii) = integral enddo enddo enddo enddo !$OMP END PARALLEL DO END_PROVIDER double precision function get_mo_two_e_integral_erf(i,j,k,l,map) use map_module implicit none BEGIN_DOC ! Returns one integral $\langle ij|kl \rangle$ in the |MO| basis END_DOC integer, intent(in) :: i,j,k,l integer(key_kind) :: idx integer :: ii type(map_type), intent(inout) :: map real(integral_kind) :: tmp PROVIDE mo_two_e_integrals_erf_in_map mo_integrals_erf_cache ii = l-mo_integrals_erf_cache_min ii = ior(ii, k-mo_integrals_erf_cache_min) ii = ior(ii, j-mo_integrals_erf_cache_min) ii = ior(ii, i-mo_integrals_erf_cache_min) if (iand(ii, -64) /= 0) then !DIR$ FORCEINLINE call two_e_integrals_index(i,j,k,l,idx) !DIR$ FORCEINLINE call map_get(map,idx,tmp) get_mo_two_e_integral_erf = dble(tmp) else ii = l-mo_integrals_erf_cache_min ii = ior( ishft(ii,6), k-mo_integrals_erf_cache_min) ii = ior( ishft(ii,6), j-mo_integrals_erf_cache_min) ii = ior( ishft(ii,6), i-mo_integrals_erf_cache_min) get_mo_two_e_integral_erf = mo_integrals_erf_cache(ii) endif end double precision function mo_two_e_integral_erf(i,j,k,l) implicit none BEGIN_DOC ! Returns one integral $\langle ij|kl \rangle$ in the |MO| basis END_DOC integer, intent(in) :: i,j,k,l double precision :: get_mo_two_e_integral_erf PROVIDE mo_two_e_integrals_erf_in_map mo_integrals_erf_cache !DIR$ FORCEINLINE PROVIDE mo_two_e_integrals_erf_in_map mo_two_e_integral_erf = get_mo_two_e_integral_erf(i,j,k,l,mo_integrals_erf_map) return end subroutine get_mo_two_e_integrals_erf(j,k,l,sze,out_val,map) use map_module implicit none BEGIN_DOC ! Returns multiple integrals $\langle ij|kl \rangle$ in the |MO| basis, all ! i for j,k,l fixed. END_DOC integer, intent(in) :: j,k,l, sze double precision, intent(out) :: out_val(sze) type(map_type), intent(inout) :: map integer :: i integer(key_kind) :: hash(sze) real(integral_kind) :: tmp_val(sze) PROVIDE mo_two_e_integrals_erf_in_map do i=1,sze !DIR$ FORCEINLINE call two_e_integrals_index(i,j,k,l,hash(i)) enddo if (key_kind == 8) then call map_get_many(map, hash, out_val, sze) else call map_get_many(map, hash, tmp_val, sze) ! Conversion to double precision do i=1,sze out_val(i) = dble(tmp_val(i)) enddo endif end subroutine get_mo_two_e_integrals_erf_ij(k,l,sze,out_array,map) use map_module implicit none BEGIN_DOC ! Returns multiple integrals $\langle ij|kl \rangle$ in the |MO| basis, all ! $\int i(1)j(2) \frac{1}{r_{12}} k(1)l(2)$ ! i, j for k,l fixed. END_DOC integer, intent(in) :: k,l, sze double precision, intent(out) :: out_array(sze,sze) type(map_type), intent(inout) :: map integer :: i,j,kk,ll,m integer(key_kind),allocatable :: hash(:) integer ,allocatable :: pairs(:,:), iorder(:) real(integral_kind), allocatable :: tmp_val(:) PROVIDE mo_two_e_integrals_erf_in_map allocate (hash(sze*sze), pairs(2,sze*sze),iorder(sze*sze), & tmp_val(sze*sze)) kk=0 out_array = 0.d0 do j=1,sze do i=1,sze kk += 1 !DIR$ FORCEINLINE call two_e_integrals_index(i,j,k,l,hash(kk)) pairs(1,kk) = i pairs(2,kk) = j iorder(kk) = kk enddo enddo logical :: integral_is_in_map if (key_kind == 8) then call i8sort(hash,iorder,kk) else if (key_kind == 4) then call isort(hash,iorder,kk) else if (key_kind == 2) then call i2sort(hash,iorder,kk) endif call map_get_many(mo_integrals_erf_map, hash, tmp_val, kk) do ll=1,kk m = iorder(ll) i=pairs(1,m) j=pairs(2,m) out_array(i,j) = tmp_val(ll) enddo deallocate(pairs,hash,iorder,tmp_val) end subroutine get_mo_two_e_integrals_erf_i1j1(k,l,sze,out_array,map) use map_module implicit none BEGIN_DOC ! Returns multiple integrals $\langle ik|jl \rangle$ in the |MO| basis, all ! $\int i(1)j(1) \frac{\erf(\mu * r_{12})}{r_{12}} k(2)l(2)$ ! i, j for k,l fixed. END_DOC integer, intent(in) :: k,l, sze double precision, intent(out) :: out_array(sze,sze) type(map_type), intent(inout) :: map integer :: i,j,kk,ll,m integer(key_kind),allocatable :: hash(:) integer ,allocatable :: pairs(:,:), iorder(:) real(integral_kind), allocatable :: tmp_val(:) PROVIDE mo_two_e_integrals_erf_in_map allocate (hash(sze*sze), pairs(2,sze*sze),iorder(sze*sze), & tmp_val(sze*sze)) kk=0 out_array = 0.d0 do j=1,sze do i=1,sze kk += 1 !DIR$ FORCEINLINE call two_e_integrals_index(i,k,j,l,hash(kk)) pairs(1,kk) = i pairs(2,kk) = j iorder(kk) = kk enddo enddo logical :: integral_is_in_map if (key_kind == 8) then call i8sort(hash,iorder,kk) else if (key_kind == 4) then call isort(hash,iorder,kk) else if (key_kind == 2) then call i2sort(hash,iorder,kk) endif call map_get_many(mo_integrals_erf_map, hash, tmp_val, kk) do ll=1,kk m = iorder(ll) i=pairs(1,m) j=pairs(2,m) out_array(i,j) = tmp_val(ll) enddo deallocate(pairs,hash,iorder,tmp_val) end subroutine get_mo_two_e_integrals_erf_coulomb_ii(k,l,sze,out_val,map) use map_module implicit none BEGIN_DOC ! Returns multiple integrals $\langle ki|li \rangle$ ! ! k(1)i(2) 1/r12 l(1)i(2) :: out_val(i1) ! for k,l fixed. END_DOC integer, intent(in) :: k,l, sze double precision, intent(out) :: out_val(sze) type(map_type), intent(inout) :: map integer :: i integer(key_kind) :: hash(sze) real(integral_kind) :: tmp_val(sze) PROVIDE mo_two_e_integrals_erf_in_map integer :: kk do i=1,sze !DIR$ FORCEINLINE call two_e_integrals_index(k,i,l,i,hash(i)) enddo if (key_kind == 8) then call map_get_many(map, hash, out_val, sze) else call map_get_many(map, hash, tmp_val, sze) ! Conversion to double precision do i=1,sze out_val(i) = dble(tmp_val(i)) enddo endif end subroutine get_mo_two_e_integrals_erf_exch_ii(k,l,sze,out_val,map) use map_module implicit none BEGIN_DOC ! Returns multiple integrals $\langle ki|il \rangle$ ! ! $\int k(1)i(2) \frac{1}{r_{12}} i(1)l(2)$ :: out_val(i1) ! for k,l fixed. END_DOC integer, intent(in) :: k,l, sze double precision, intent(out) :: out_val(sze) type(map_type), intent(inout) :: map integer :: i integer(key_kind) :: hash(sze) real(integral_kind) :: tmp_val(sze) PROVIDE mo_two_e_integrals_erf_in_map integer :: kk do i=1,sze !DIR$ FORCEINLINE call two_e_integrals_index(k,i,i,l,hash(i)) enddo if (key_kind == 8) then call map_get_many(map, hash, out_val, sze) else call map_get_many(map, hash, tmp_val, sze) ! Conversion to double precision do i=1,sze out_val(i) = dble(tmp_val(i)) enddo endif end integer*8 function get_mo_erf_map_size() implicit none BEGIN_DOC ! Returns the number of elements in the |MO| map END_DOC get_mo_erf_map_size = mo_integrals_erf_map % n_elements end